Cosmic rays & their interstellar medium environment CRISM-2011

ID de Contribution: 120

Type: Non spécifié

Ion irradiation experiments relevant to the astrophysics ices

jeudi 30 juin 2011 18:05 (5 minutes)

Methane (CH₄) and methanol (CH₃OH) ices are present in various astrophysical environments, from dense molecular clouds to several small objects in the outer solar system, in particular on Saturn satellite Triton and to be a constituent of the icy mantle on interstellar grain [1]. There is a clear lack of information about the phenomena induced by the heavy-ion component of cosmic-rays in the electronic-energy-loss regime.

In this work, the chemical and physical effects induced by fast heavy ions irradiation on frozen pure methane and methanol at 15 K are studied. Measurements were performed at the medium energy

beam-line of the heavy ion accelerator GANIL (Grand Acc\'el\'erateur National d'Ions Lourds), Caen-France [2]. The analysis was done by infrared spectroscopy (FTIR) during irradiation by 220 MeV $^{16}\text{O}^{7+}$ ion beam. For the case of methane, the principal molecular species identified as a product after irradiation are: CH₃, C₂H₂, C₂H₄, C₂H₆ and C₃H₈. For methanol ices are: H₂CO, CH₂OH, CH₄, CO, CO₂, HCO and HCOOCH₃ other products are identified with ambiguity. Their formation and dissociation cross sections are determined. The cross section of CH₄ and CH₃OH and its daughters species follows a power law as a function of the electronic stopping power. It is found that, some daughters species cross sections increase with the electronic stopping power roughly as $\sigma \propto S_e^{3/2}$. As astrophysical implication, the S_e^n power law, where $n \approx 3/2$ should be very helpful for predicting the CH₄ and CH₃OH formation and the dissociation cross sections for other ion beam projectiles and energies in the ISM rich in hydrocarbons that are continuously bombarded by cosmic rays.

Orateur: M. MEJÍA GUAMÁN, Christian Fernando (PUC Rio)

Classification de Session: Poster session