Nuclear interactions of low-energy cosmic-rays with the interstellar medium

V. Tatischeff (CSNSM, Orsay, France)

LiBeB nucleosynthesis
 Nuclear γ-ray line emission

CRISM-2011, Montpellier, France, 26 June – 01 July 2011

Galactic Cosmic Ray Origin of Li, Be and B

- LiBeB/Si is $10^4 10^6$ higher in the GCRs than in the solar system
- Reeves, Fowler & Hoyle (1970): assuming cst CR spectrum and CNO abundances throughout the history of the Galaxy, solar Li (!), Be and B could originate from GCR interactions, provided that the GCR flux $F_{\rm GCR}(E>30 {\rm MeV/n})\sim 17 {\rm cm}^{-2} {\rm s}^{-1}$

Be and B are primary elements

• Within the standard model for the origin of Galactic cosmic rays, in which GCRs are accelerated out of the ISM:

$$\frac{dN_{\text{Be}}}{dt}(t) \propto \Phi_{p\alpha}^{\text{GCR}}(t) N_{\text{CNO}}^{\text{ISM}}(t) + \Phi_{\text{CNO}}^{\text{GCR}}(t) N_{p\alpha}^{\text{ISM}}(t) \propto \frac{dN_{\text{SN}}}{dt}(t) N_{\text{SN}}(0 \rightarrow t)$$
$$\Rightarrow N_{\text{Be}}(t) \propto \left[N_{\text{SN}}(0 \rightarrow t)\right]^2 \propto \left[\text{Fe/H}\right]^2$$

but observations (from the 90's) show that Be and B vary linearly with [Fe/H] • ${}^{11}B({}^{11}B/{}^{10}B=4)$ production by v spallation of ${}^{12}C$ in CC SNe (Woosley et al. 1990)

Nucleosynthesis of primary Be in SNRs

- CRs accelerated in a SN blast wave interact with SN ejecta before being released in the ISM
- Parizot & Dury (1999) calculated that this process would produce ~10 times less Be/O in the early Galaxy than required, BUT
 - the CR injection rate was possibly underestimated in this study
 - the assumption of a homogeneous SNR likely underestimates the Be production
- \Rightarrow Can GCRs produce enough primary Be before being released in the ISM?

Nucleosynthesis of primary Be in SNRs

On the origin of Galactic cosmic rays

- CNO GCRs were/are accelerated out of freshly synthesized matter
- Acceleration of SN ejecta at the reverse shock? (e.g. Ramaty et al. 1997)

No because of the absence of ⁵⁹Ni (τ ~10⁵ yr) in the GCR \Rightarrow delay >10⁵ yr between nucleosynthesis and acceleration

 Acceleration in superbubbles ? (Higdon et al. 1998; Parizot & Drury 1999)

• SNe are strongly associated in time and space and most explode in superbubbles

OB association ³

<u>IS</u>M

ejecta

 $T > 10^{6} \text{ K}$

 $n \sim 10^{-2} \text{ cm}^{-1}$

0

- From BeB evolution, GCRs may come from ~25% SN/WR material and ~75% ISM (e.g. Alibés et al. 2002)
- Consistent with ¹²C/¹⁶O, ²²Ne/²⁰Ne and ⁵⁸Fe/⁵⁶Fe in GCRs (Higdon & Lingenfelter 2003) or not (Prantzos 2011)
- Probably no problem with ⁵⁹Ni

The spectrum of CRs accelerated in superbubbles

- Collective effects in the acceleration process: multiple shocks (Fermi 1) and stochastic acceleration by turbulence (Fermi 2) between shocks (e.g. Bykov & Fleishman 1992, Parizot et al. 2004, Ferrand & Marcowith 2010)
- \Rightarrow CR spectra are harder (resp. softer) than p⁻⁴ below (resp. above) a critical energy, that depends on the superbubble parameters (no universal spectrum)
- \Rightarrow may be inconsistent with the spectral uniformity, consistent with the local CR spectrum, deduced from Fermi γ -ray observations (Ackermann et al. 2011)

GCRs from fast rotating massive stars

- Fast rotating massive stars exploding into their former stellar winds could produce cosmic rays of ~constant metallicity (Prantzos 2010)
- Ejection of CNO-rich winds even at low metallicity: - H-burning products in the equatorial plane during the main sequence (v_{surf} ~ the critical limit)
 - For $M_{\rm ini}$ > 40 M_{\odot} , radiatively-driven wind enriched in He-burning products after the main sequence
- But only ~15% of M_* > 40 M_{\odot} for a Salpeter IMF
- Jet-like SN explosion (?)

• Is this process really able to account for ~25% of WR wind material in the GCR

On Li nucleosynthesis

 ⁷Li is also significantly synthesized in the Big Bang and in stars: AGB stars, novae and type II supernovae

Nuclear y-ray lines from the ISM

12**C**

hν

hν

• Narrow lines: e.g. ${}^{12}C(p,p'){}^{12}C^{*}_{4,439}$, ${}^{12}C(p,2pn){}^{10}B^{*}_{0,718}$

- Broad lines: e.g. ${}^{1}H({}^{12}C, {}^{12}C^{*}_{4439}){}^{1}H$
- $\alpha \alpha$ line: ${}^{4}\text{He}(\alpha, n){}^{7}\text{Be}^{*}{}_{0,429}$ and ${}^{4}\text{He}(\alpha, p){}^{7}\text{Li}^{*}{}_{0,478}$
- + the 511 keV line (not shown)

Nuclear y-ray lines from interstellar dust

• A unique way of tracing micrometer-sized dust grains (VT & Kiener 2004)

Galactic diffuse emission in y-ray lines – model

- "Standard" CR spectrum: disk-halo diffusion model (Jones et al. 2001) fitted to local CR proton data
- Additional low-energy component to account for the CR ionization rate $\zeta_{CR} = 4 \times 10^{-16} \text{ s}^{-1}$ deduced from H_3^+ measurements in diffuse H_2 clouds (Indriolo et al. 2009)
- CR composition: measured Ambient: two-times solar
- Normalization to π^0 production

Galactic diffuse emission in γ -ray lines – results

Fermi data, γ -ray sources and CR electron contributions: Strong et al. (2011)

Detectability (in the next 20 years)

- Gamma-ray telescope proposals in response to the recent ESA call (2010) for the third Medium size mission (M3): DUAL (CESR Toulouse), GRIPS (MPE Garching) and CAPSITT (APC Paris)
- None selected by ESA for an assessment phase...

Estimated 4.4 MeV line flux in $b = \pm 1.5^{\circ}$, $l = \pm 60^{\circ}$: 5.9×10⁻⁶ cm⁻² s⁻¹

4.4 MeV ($\Delta E = 100 \text{ keV}$) CAPSITT 3 σ sensitivity for $T_{obs} = 10^6 \text{ s}$: 2.5x10⁻⁶ cm⁻² s⁻¹ for a point source ~3.4x10⁻⁵ cm⁻² s⁻¹ for an extended emission in $b = \pm 1.5^\circ$, $l = \pm 60^\circ$

 \Rightarrow a detection would need a minimum of $T_{obs} \sim 3 \times 10^7 s$

Estimated 3 – 10 MeV line flux in $b = \pm 1.5^{\circ}$, $l = \pm 60^{\circ}$: 6.0×10^{-5} cm⁻² s⁻¹

5 MeV CAPSiTT 30 broad-band sensitivity for 5 years in survey mode: 4.8x10⁻⁷ cm⁻² s⁻¹ for a point source

~6.7x10⁻⁶ cm⁻² s⁻¹ for an extended emission in $b = \pm 1.5^{\circ}$, $l = \pm 60^{\circ}$

- The observed primary evolution of Be versus [Fe/H] shows that CNO GCRs were/are partly accelerated out of freshly synthesized matter
- CR acceleration in SNRs within superbubbles may be the best explanation; there is no evidence for collective effects in the acceleration process
- The detection of nuclear interaction γ-ray lines would provide the best way of studying the various effects of sub-GeV CRs in the ISM ⇒ a major objective for the next-generation of MeV γ-ray telescopes

Ionization of the ISM by low-energy cosmic rays

- Low-energy cosmic rays are the primary source of ionization in shielded H_2 regions ($A_V > \sim 4$ mag; where stars form)
- Ionization fraction in dense clouds

 dynamics of star formation
 (ambipolar diffusion) + synthesis of polyatomic molecules
- From H_3^+ in diffuse clouds, $\zeta_{CR} \approx 10^{-16} - 10^{-15} \text{ s}^{-1}$ (e.g. McCall et al. 1998; Indriolo et al. 2007) 10–100 larger than the "standard" (Spitzer) value
- ⇒ Higher flux of low-energy cosmic-ray electrons or ions (Indriolo et al. 2009; Padovani et al. 2009)

