Supernova Remnants and Pulsar Wind Nebulae in the Cherenkov Telescope Array era

M. Renaud

LUPM, CNRS/IN2P3 – Univ. Montpellier 2, France

for the CTA consortium

with contributions from F. Acero, A. Bamba, E. de Cea,S. Gabici, Y. Gallant, D. Hadasch, A. Marcowith,E. de Ona Wilhelmi, G. Pedaletti, D. Torres

CRISM workshop Montpellier, 27th June – 01st July 2011

Outline

Current IACTs & the TeV sky Status of the CTA project

Shell-type Supernova Remnants (SNRs)

TeV spectra (cutoffs) Spectro-imaging analysis (X-ray/TeV correlation) Population studies

Pulsar Wind Nebulae (PWNe)

Spectro-imaging analysis (aging of particules) Population studies

Conclusion & Perspectives

27th June 2011

CRISM workshop - Montpellier

Current IACTs

Adapted from J. Hinton

The TeV sky

27th June 2011

CRISM workshop - Montpellier

Selection of sites by 201210 km² flat area, 1.5-4.0 km altitude, minimum cloud cover, easiest access, ...27th June 2011CRISM workshop - MontpellierM. Renaud

Low-energy section energy threshold of \sim 20–30 GeV 23–24m telescopes Medium energies mcrab sensitivity ~100 GeV-10 TeV 10-12m telescopes High-energy section 10 km² area at multi-TeV energies 5–8*m* telescopes

CRISM workshop - Montpellier

Higher sensitivity Wider energy coverage Better angular resolution Better energy resolution Wider field-of-view → 1000 sources? Pop. studies
 Spectr(o-imaging)al parameters
 Source identification & morphology
 Cutoffs & spectral features
 Extended sources & survey

~mCrab, 5σ, 50h @ TeV 30 GeV – 300 TeV ~2 arcmin @ TeV rms < 10% @ TeV 6 – 8 degrees

A ~200 M€ International Project >700 scientists & engineers in >100 institutes in 25 countries Design 2008–11, Prototyping 2011–13, Construction 2013–18

CTA as an Open Observatory

EU funded 5.2 M€ v:1008.3703 Preparatory Phase 10/2010–10/2013 CRISM workshop - Montpellier M. Renaud

« Design Concepts for CTA » arXiv:1008.3703 27th June 2011 CRISM worksh

In what follows, compare quantitatively performance of three different CTA configurations, optimized for different energy ranges, for SNRs & PWNe

27th June 2011

CRISM workshop - Montpellier

Seeking the CR hadronic sources

RX J1713 TeV spectra

RX J1713.7-3946 spectral parameters

Best fit on the LAT-HESS data in the form: $dN/dE = N_0 E^{-\Gamma} \exp(-(E/E_{max})^{\beta})$ { Γ, β, E_{max} } well constrained

27th June 2011

CRISM workshop - Montpellier

RX J1713 TeV spectra

Best fit on the LAT-HESS data in the form: $dN/dE = N_0 E^{-\Gamma} \exp(-(E/E_{max})^{\beta})$ { Γ, β, E_{max} } well constrained HESS data points >35 TeV : 2.5, 1.5 & 0.6 σ CTA simulations $\rightarrow S/N_{>35TeV} \sim 7\sigma$ in 50 h

27th June 2011

CRISM workshop - Montpellier

RX J1713 Spectro-imaging analysis

CTA simulation (T = 50h, Z.A. = 20°) of RX J1713.7-3946 as seen by XMM with best-fit values from the joint Fermi-LAT & HESS spectrum: $dN/dE = N_0 E^{-\Gamma} \exp(-(E/E_{max})^{\beta})$

RX J1713 Spectro-imaging analysis

CTA simulation (T = 50h, Z.A. = 20°) of RX J1713.7-3946 as seen by XMM with best-fit values from the joint Fermi-LAT & HESS spectrum: $dN/dE = N_0 E^{-\Gamma} \exp(-(E/E_{max})^{\beta})$

Gamma-ray Flux > 1 TeV $(10^{-12} \text{ cm}^{-2} \text{ s}^{-1})$

CRISM workshop - Montpellier

RX J1713 Spectro-imaging analysis

CTA simulation (T = 50h, Z.A. = 20°) of RX J1713.7-3946 as seen by XMM with best-fit values from the joint Fermi-LAT & HESS spectrum: $dN/dE = N_0 E^{-\Gamma} \exp(-(E/E_{max})^{\beta})$

Population studies

(Aharonian et al. 2006 ; 2007 ; 2009 ; 2011)

CTA simulations of RX J1713-, Vela Jr-, RCW86-, HESS J1731-like SNRs with their respective spectral and morphological properties as measured with H.E.S.S.

Horizons of : $Detectability \rightarrow d / S/N = 5\sigma$ $Resolvability \rightarrow d / Shell favored$ over Gaussian fit

27th June 2011

CRISM workshop - Montpellier

27th June 2011

CRISM workshop - Montpellier

Population studies

Simulate Galactic (core-collapse) SNR distribution :

Assume R_{gal} distribution of Case & Bhattacharya (1998) Concentrated around spiral arms as given by Vallée (2008), but see Dame & Thaddeus (2011) With arm dispersion as in dust model of Drimmel & Spergel (2001)

Population studies

Simulate Galactic (core-collapse) SNR distribution :

Assume R_{gal} distribution of Case & Bhattacharya (1998) Concentrated around spiral arms as given by Vallée (2008), but see Dame & Thaddeus (2011) With arm dispersion as in dust model of Drimmel & Spergel (2001)

If all SNRs shine ~ 3000 yr in TeV $\rightarrow \sim 60$ TeV shells !

~20–55 would be detectable but only ~ 7–12 would be resolvable with CTA-I More distant shells identified with MWL follow-up observations If CTA PSF improved by a factor of 2 \rightarrow almost 2× more resolvable SNRs! 27th June 2011 CRISM workshop - Montpellier M. Renaud

Seeking the CR leptonic sources

27th June 2011

CRISM workshop - Montpellier

M. Renaud

cherenkov telescope arrav

PWNe as seen with CTA

cherenkov telescope arrav

cherenkov telescope arrav

PWNe as seen with CTA

PWNe with Crab luminosity detectable (in 50h, 5 σ) up to : CTA-B (E > 205 GeV) \rightarrow d = 54 kpc CTA-D (E > 600 GeV) \rightarrow d = 57 kpc CTA-I (E > 250 GeV) \rightarrow d = 53 kpc N 157B/PSR J05367-6910, Komin et al. 2010)

PWNe as seen with CTA

Fainter PWNe detectable to 10 - 15 kpc (depending on object, configuration) $\tau_{\text{TeV-emitting leptons}} \sim 40$ kyr (B=3 µG, de Jager & Djannati-Ataï 2009), total of ~200-400 PWNe!27th June 2011CRISM workshop - MontpellierM. Renaud

Conclusion & Perspectives

Precise TeV spectra of shell-type SNRs in order to discriminate between hadronic and leptonic emission, especially in the *cutoff region*

Spectro-imaging analysis (X-ray/TeV correlation studies & spatially-resolved TeV spectra) of the brightest SNRs (e.g. RX J1713.7-3946)

SNR/MC associations in order to constrain the properties of *CR propagation* in the vicinity of CR sources (& «passive» MCs as CR barometers \rightarrow CR distribution)

SNRs = CR hadronic sources? \rightarrow Population studies & importance of the PSF to measure shell morphology & to mitigate source confusion along the Galactic Plane

Aging of particules in evolved PWNe (e.g. HESS J1825-137). May be used to shed light on the unclassified (so-called «dark») sources

Crab-like PWNe in the LMC

PWNe = CR *leptonic* sources ? \rightarrow Population studies with ~200-400 evolved PWNe & importance of the PSF to mitigate source confusion along the Galactic Plane!

27th June 2011

Highlights in TeV astronomy

Results from HESS, MAGIC and VERITAS

Pulsars : Science 322, 1221 (2008)

Supernova Remnants : Nature 432, 75 (2004)

The Galactic Center : Nature 439, 695 (2006)

Galactic Survey : Science 307, 1938 (2005)

Starburst Galaxies : Nature 462, 770 (2009), Science 326, 1080 (2009)

Microquasars : Science 309, 746 (2005), Science 312, 1771 (2006)

AGNs : Science 314, 1424 (2006), Science 325, 444 (2009)

EBL : Nature 440, 1018 (2006), Science 320, 752 (2008)

Dark Matter : Phys Rev Letters 97, 221102 (2006)

Lorentz Invariance : Phys Rev Letters 101, 170402 (2008)

Cosmic-ray Electrons : Phys Rev Letters 101, 261104 (2008)

Cosmic-ray Iron Nuclei : Phys Rev D 75, 042004 (2007)

27th June 2011

CRISM workshop - Montpellier

Adapted from J. Hinton

M. Renaud

IC443 TeV spectra

(Albert et al. 2007, Acciari et al. 2009, Abdo et al. 2010)

27th June 2011

CRISM workshop - Montpellier

IC443 TeV spectra

Broken power-law from Fermi/LAT – MAGIC/VERITAS spectra well constrained with CTA : $\sigma_{\Gamma, \text{ high E}} = 0.03$, for T > 20h Any cutoff will be measured significantly in 20–30 h, if $E_{\text{cut}} < 5$ TeV

27th June 2011

CRISM workshop - Montpellier

SNR/MC association

(Aharonian et al. 2008)

SNR/MC association

(Aharonian et al. 2008)

27th June 2011

SNR/MC association

27th June 2011

CRISM workshop - Montpellier

energy E(TeV)

27th June 2011

ຶສ

-23°30`

24°

S.11801-23

GRO .11801-2320

18h03m

CRISM workshop -