Towards Fermi-LAT Detected Supernova Remnants as Cosmic Ray Accelerators

T. J. Brandt

On behalf of the Fermi-LAT Collaboration IRAP/Université Paul Sabatier

brandt@cesr.fr

CRISM: 27 Jun 2011

All-particle CR Spectrum

Cosmic rays are: ➤ charged particles from outer space (V. Hess, 1912) $\begin{array}{l} \sim 90\% \text{ Hydrogen} \\ \sim 9\% \text{ Helium} \\ \sim 1\% \text{ Z} > 2 \end{array}$ Spectrum falls as: $dF/dE \propto E^{-\alpha}$ $\alpha \approx 2.7$ for $\sim 10^9 \, eV \le E \le 10^{15} \, eV$ $\alpha \approx 3.3$ for $\sim 10^{15} \,\mathrm{eV} \le E \le 10^{18.6} \,\mathrm{eV}$ $\alpha \approx 2.6$ \succ for $\sim E > 10^{18.6} \, eV$ + propagation => $\gamma \sim 2.1$ > for galactic CRs (E $<\sim 10^{15}$ eV)

2

Understanding CRs: Methods

Direct (galactic) CR measurements:

> CREAM, ATIC, BESS, PAMELA, ACE, CRIS, AMS, ...

- measure incident particle energy and charge and/or mass
- > at the top of Earth's atmosphere or in space
- > to infer propagation and source/acceleration properties.

Indirect CR detection

- → Use photons to trace CR interactions:
- > image potential sources in gamma-rays
 - ► ... and other wavelengths!
- measure the CR propagation component of the diffuse galactic (gamma-ray) emission
- ► and more!

Fermi Gamma-ray Space Telescope

Photon Detector

Launched: 11 June 2008 on a Delta II rocket Photon Energy and Direction from 2 main (science) subsystems:

- ► GBM: GLAST Burst Monitor
 - ► 12 NaI detectors: 8 keV 1 MeV
 - ➤ 2 BGO detectors: 0.15 30 MeV
 - nearly full sky coverage at all times
- ► LAT: Large Area Telescope
 - Tracker: 4x4 array of towers, each with 18 planes of Si-strip detectors interleaved with W converting foils
 - Calorimeter E: 8 layers of 12 CsI(Tl) crystals oriented orthogonally
 - ACD CR veto: tiled plastic scintillator

T. J. Brandt

Fermi Gamma-ray Space Telescope

Photon Detector

Launched: 11 June 2008 on a Delta II rocket Photon Energy and Direction from 2 main (science) subsystems:

- ► GBM: GLAST Burst Monitor
 - ► 12 NaI detectors: 8 keV 1 MeV
 - ➤ 2 BGO detectors: 0.15 30 MeV
 - nearly full sky coverage at all times
- ► LAT: Large Area Telescope
 - Tracker: 4x4 array of towers, each with 18 planes of Si-strip detectors interleaved with W converting foils
 - Calorimeter E: 8 layers of 12 CsI(Tl) crystals oriented orthogonally
 - ACD CR veto: tiled plastic scintillator

T. J. Brandt

electron-positron pair

Fermi Collaboration 5

Fermi-Detected Sources

Include many SNRs:

- many middle-aged SNRs
- consistent with radio,
- apparently interacting with molecular clouds
- likely pion decay...

LAT count maps in 2-10 GeV of the Molecular Cloud-interacting SNRs with extended gamma-ray emission for frontconverting events.

- Contours: VLA radio maps.
- (a) Black ellipse: shocked CO
- (c) Black crosses: OH maser emission => shocked molecular clumps

Uchiyama, Texas Symp 2010

Indirect Detection:

Image potential sources of galactic CRs to determine:

- ➤ their acceleration processes
- > the composition of accelerated particles and thus,
- > their ability to produce high energy particles with the observed galactic CR properties
- ► using Fermi GST.

Gamma-rays (and Fermi in particular)

- > Good image resolution \Rightarrow spatial separation of the components
- > Sensitivity to pion decay products ($\pi^0 \rightarrow \gamma \gamma$)
 - > and bremsstrahlung & inverse Compton processes
- $ightarrow \Rightarrow$ spectral separation of acceleration processes
- > Survey mode gives high statistics.
- In combination with full EM spectrum and spectroscopy, can begin to resolve potential sources' ability to accelerate CRs.

One source \rightarrow a catalog \rightarrow a possible statistical correlation

- SNR CTB 37A is one such potential source resolved by Fermi and H.E.S.S. with corresponding radio, IR, and X-ray data.
- By combining many such sources into a catalog, we can make statistically significant observations about the class's ability to produce CRs.

Analysis

Using standard Fermi science tools:

- Binned likelihood analysis (gtlike)
- ► MET: 239903654 287682854 = 18 month's data
- ► E: 0.2 50 GeV
- ► 4.5° ROI
- Event Class: Diffuse

to perform analysis:

Removed all other identified
 Fermi (1FGL) catalog sources
 within 4.5° ROI

and find:

 Galactic plane is relatively flat; source apparent and coincident with CTB 37A and radio contours.

Fermi Detection of CTB 37A:

Location & extension consistent with radio & H.E.S.S. data as well as nominal CTB 37A position.

> Detected with 18.6σ

Location:

- $RA = 258.68^{\circ} \pm 0.05 \pm 0.004$
- $ightarrow Dec = -38.54^{\circ} \pm 0.04^{\circ} \pm 0.02$

Extension:

- ► $0.13^{\circ} \pm 0.02^{\circ} \pm 0.04^{\circ}$
- ► Significance: ~4.5σ

Position and extension stable for

- 4 of the reasonable diffuse models
 ~ spanning the parameter space
- ► high energy events (2-50 GeV)
- "Front" events (inherently better PSF)

Variability: None yet observed

- Light curve: no long-term variability
- Pulsations: none seen in
 - Blind search: <~3x10⁻⁷ ph/cm²/s (pulsed)
 - > of possible counterparts (\Box)

T. J. Brandt

- Radio contours
 - ► H.E.S.S. detection
- Fermi detection
- \sim XMM contours
 - (MOS1: 0.2-10keV)

CTB 37B: Upper Limit

Used gtlike to determine upper limits at the HESS position.

- ► Tested:
 - ► HESS position
 - Power law (PL) and exponentially cutoff PL (ECPL)
 - ► Spectral index: i = 2.1, 2.3, 2.5
 - Minimum γ energy: E_{min} = 200 MeV, 5 GeV
 - > Fixed $E_{max} = 50 \text{ GeV}$
- Flux limits are consistent for all spectral forms and indices
- > $F_{2\sigma} < 8x10^{-8} \text{ ph/cm}^2/\text{s}$ for E = 200 MeV 50 GeV

T. J. Brandt Fermi Residual map with:

Multiwavelength Spectrum: Data

- > Synchrotron emission:
 - ► **Radio** (Kassim et al., 1991)
 - > IR: Spitzer (Reach et al., 1991)
 - > (unconstraining) upper limit
 - ► X-ray:
 - > XMM-Newton spectrum consistent with absorbed thermal emission
 - in agreement with XMM & Chandra analysis performed by HESS team
 - ➤ upper limit
- ► Gamma-ray:
 - ≻ Fermi
 - > **HESS** (Aharonian et al., 2008)

Multiwavelength Spectrum: Model

Simultaneously fit both lepton and hadron populations:

- Lepton population:
 - Assume: exponentially cutoff power law:

>
$$N_e(E) = N_{0,e} E^{\gamma e} \exp(-E/E_{cut,e})$$

- ≻ Fit: N_{0,e}, γ_e , E_{cut,e}
- Hadron population:
 - > Assume: simple power law:

$$\succ N_p(E) = N_{0,p} E^{\gamma p}$$

- > Fit: $N_{0,p}$, γ_p
- Magnetic field:
 - Constrained <1.5mG from OH maser Zeeman splitting observations
 - Fit: magnetic field intensity (B)
- ► Gas mass:
 - > Assume: reasonable $M_{\rm H} = 6.5 \text{ x } 10^4 \text{ M}_{\odot}$
 - Consistent with CO measurements
 - > Determine: parameters' scaling relations with M_H

► Model emission processes:

- ► Synchrotron
- Bremsstrahlung*
- inverse Compton
- ➤ Pion decay*
- Scaled to solar metallicity
- ► Minimized χ^2
 - using Powell method, results consistent with other methods

>
$$\chi^2 = 16.4$$
 for 17 dof

- $> 1\sigma$ errors:
 - > searched extreme values for which $\Delta \chi^2 = 1$

Multiwavelength Spectrum: Results

- > Lepton population:
 - > $N_{0,e} = 3.79^{+3.99}_{-1.70} \text{ e/s/cm}^2/\text{GeV/sr}$
 - $> \gamma_e = -1.35^{+0.32}_{-0.23}$
 - $> E_{cut,e} = 4.1^{+3.4}_{-1.7} \text{ GeV}$
- Hadron population:
 - > $N_{0,p} = 163.5^{+60.5}_{-137.7} \text{ p/s/cm}^2/\text{GeV/sr}$ > $\gamma_p = -2.5^{+0.04}_{-0.19}$
- Magnetic field:
 - ► B = $109^{+56}_{-49} \mu G$
 - $> 1^{st}$ lower limit
 - Constraining upper limit
- ≻ Gas mass:
 - \succ Parameters' scaling relations with M_H
 - N_{0,p} has slope ~1, as expected for π⁰ emissivity scaling with gas mass
 - All other parameters showed no significant variation with gas mass beyond the errors.

- Particle type:
 - ✓ Hadrons
- Spectral index
 - ✓ 1 σ , consistent with $\gamma \sim 2.1$ from direct detection
- Proton Cutoff Energy
 - ≻ $E_{p,max}$ ~10¹⁴eV
 - ✓ consistent with direct detection E_{max} ~10¹⁵eV for all CR accelerators

Multiwavelength Spectrum: Results

- > Lepton population:
 - $> N_{0,e} = 3.79^{+3.99}_{-1.70} \text{ e/s/cm}^2/\text{GeV/sr}$
 - $\succ \gamma_e = -1.35^{+0.32}_{-0.23}$
 - $> E_{cut,e} = 4.1^{+3.4}_{-1.7} \text{ GeV}$
- ► Hadron population:
 - > $N_{0,p} = 163.5^{+60.5}_{-137.7} \text{ p/s/cm}^2/\text{GeV/sr}$ > $\gamma_p = -2.5^{+0.04}_{-0.19}$
- Magnetic field:
 - ► B = $109^{+56}_{-49} \mu G$
 - $> 1^{st}$ lower limit
 - Constraining upper limit
- ≻ Gas mass:
 - \succ Parameters' scaling relations with M_H
 - N_{0,p} has slope ~1, as expected for π⁰ emissivity scaling with gas mass
 - All other parameters showed no significant variation with gas mass beyond the errors.

- ► Energetics:
 - ► Total, steady-state energy:
 - ► hadrons = $5.1^{+1.3}_{-3.6} \ge 10^{49}$ ergs
 - > leptons = $2.7^{+4.0}_{-1.4} \times 10^{48}$ ergs

$$> E_{cut,e} = 4.1^{+3.4} - 1.7 \text{ GeV}$$

- > Find typical conversion efficiency: $\sim 5\%$
 - > $\eta \sim (1.5-6.4)x(M/M_H)^{-1}x(d/10.3kpc)^5x(E_{SN}/10^{51}erg)$ %
 - Consistent with HESS result when scaled to their mass and distance

Dominant Emission Mechanism

We find within the constraints of our model, the most likely gamma-ray emission scenario to be hadron-dominated, with a non-negligible contribution from bremsstrahlung emission.

T. J. Brandt

Emission Mechanism: Similarities

- inverse Compton emission essentially non-existent
 - > as ambient photon field (1.25 eV/cm³; Porter, et. al., 2008) and CMB (0.26 eV/cm³) are too low relative to other environmental conditions
- Bremsstrahlung mainly occurs at Fermi energies
 - > as π^0 + brem cannot reproduce both the Fermi and HESS data and
 - we have allowed the leptons to have a cutoff above the maximum HESS energy
- > Both π^0 and bremsstrahlung are necessary to reproduce the data

Differentiate scenarios?

- Lepton-dominated model predicts somewhat more radio emission in the Planck regime (30-857 GHz)
- Not in the Early Release Compact Source Catalog, but probably has the sensitivity
- would better constrain leptonic population and, thereby, the maximum hadronic contribution

Fermi-Detected SNRs:

	Fermi-detected SNRs	Index ¹	Index 2	E _{Break} (GeV)	Age (yrs)	Notes
ikely hadronic processes Young ²	Casssiopeia A	-2.1 ±0.1	-2.4**	>100	330	[1]
	Tycho	-2.3 ± 0.1			438	[2]
	Vela Jr.	-1.87 ± 0.2	-2.1**		680	[3]
	RX J1713	-1.5 ± 0.1	-2.2**		1600	[4] Lepton-dominated
	СТВ 37А	-2.28 ± 0.1	-2.3 ± 0.3 **		1500?	[5]
	W49B	-2.18 ± 0.04 -2.29 ± 0.02	-2.9 ± 0.2	4.8 ± 1.6	1k-4k	[6] PL disfavored at 4.4σ
	Cygnus Loop	-1.83 ± 0.06	-3.23 ± 0.19	-2.39 ± 0.26	20k	[7] No clear MC interaction
	IC 443	-1.93 ± 0.03	-2.56 ± 0.11	3.25 ± 0.6	3-4k or 20-30k	[8]
	W44	-2.06 ± 0.1	-3.02 ± 0.22	1.9 ± 0.5	~20k	[9]
	W51C	-1.97 ± 0.08	-2.44 ± 0.09	1.9 ± 0.2	~30k	[10]
	W28 (N) (and G6.5-0.4)	-2.09 ± 0.36	-2.74 ± 0.15	1.0 ± 0.2	35-150k (40k)	[11]

¹ for Power Law or I1 for Broken Power Law

² See Giordano, this conference.

** from VHE measurement

... 11 and counting!

[1] Abdo et al. 2010 (ApJL 720) [2] Neumann-Godo 2011, Fermi Symp. [3] Taka 2011, Fermi Symposium [4] 2011arXiv1103.5727A [5] Brandt 2011, Fermi Symposium [6] Kadagiri H. et al., Submitted to ApJ

C

Middle-aged

[7] Abdo et al., 2010 ApJ 718 [8] Abdo et al., 2010 (ApJ 722) [9] Abdo, et al. 2010 (AJ 712, 459) [10] Abdo et al., 2009 (ApJ 706L) [11] Abdo, et al. 2010 (Sci. 327, 1103) including W30, G349.7+0.2, 3C391, W41, ...

Conclusions:

- ► Fermi-LAT is detecting an increasing number of SNRs
 - > allows us to access a unique window in emission associated with hadronic processes
 - with multiwavelength data, we better constrain particle acceleration and environmental conditions.
- ► One example: SNR CTB 37A
 - > detected at 18.6 σ , slightly extended, stable for diffuse models & data subsets
 - ► emission consistent with H.E.S.S., X-ray, IR, and radio data
 - > no long-term (blazar) or short-term (pulsation) variability
- SNR CTB 37A: Multiwavelength model
 - Simultaneously fit lepton & hadron populations + B-field to data
 - > both π^0 and bremsstrahlung are required to reproduce the data
 - > => CTB 37A is accelerating hadrons
 - > B-field: $B = 109^{+56}_{-49} \mu G$: 1st lower limit, constraining upper limit.
 - → Conversion efficiency: η ~5%
- > Fermi-LAT SNRs: so far most middle-aged SNRs detected to date...
 - ➤ are interacting with Molecular Clouds
 - > likely hadronic-dominant emission mechanism
- A statistically significant catalog of such objects will permit us to more precisely compare SNR acceleration properties to the directly measured CRs themselves, allowing us to illuminate the 100-year mystery of CR origin.

End of slide show