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Cosmic rays are: 
➢  charged particles from  
   outer space (V. Hess, 1912) 

      ~90% Hydrogen 
➢       ~9%   Helium  
        ~1%   Z > 2 

Spectrum falls as: 
➢        dF/dE ∝ E-α 

➢             α ≈ 2.7  
   for ~ 109 eV < E < 1015 eV 

➢             α ≈ 3.3  
  for ~ 1015 eV < E < 1018.6 eV 

➢             α ≈ 2.6  
        for ~ E > 1018.6 eV 
+ propagation => 
➢        γ ~2.1  
➢  for galactic CRs (E<~ 1015 eV) 

{	
  



Direct (galactic) CR measurements: 
➢  CREAM, ATIC, BESS, PAMELA, ACE, CRIS, AMS, … 
➢  measure incident particle energy and charge and/or mass 
➢  at the top of Earth’s atmosphere or in space 

➢  to infer propagation and source/acceleration properties. 

Indirect CR detection 
➢  Use photons to trace CR interactions: 

➢  image potential sources in gamma-rays 
➢  … and other wavelengths! 

➢  measure the CR propagation component of the diffuse 
galactic (gamma-ray) emission 

➢  and more! 

Understanding	
  CRs:	
  Methods	
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Fermi	
  Gamma-­‐ray	
  Space	
  Telescope	
  

Fermi Collaboration 

Photon	
  Detector	
  

Launched: 11 June 2008 on a Delta II rocket 
Photon Energy and Direction 
from 2 main (science) subsystems: 
➢  GBM: GLAST Burst Monitor  

➢  12 NaI detectors: 8 keV – 1 MeV 
➢  2 BGO detectors: 0.15 – 30 MeV 
➢  nearly full sky coverage at all times 

➢  LAT:  Large Area Telescope 
➢  Tracker: 4x4 array of towers, each 

with 18 planes of Si-strip detectors 
interleaved with W converting foils  

➢  Calorimeter - E: 8 layers of 12 CsI(Tl) 
crystals oriented orthogonally  

➢  ACD - CR veto: tiled plastic 
scintillator 
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Contours: VLA radio maps. 
(a) Black ellipse: shocked CO 
(c) Black crosses: OH maser emission => 

shocked molecular clumps 
Uchiyama,	
  Texas	
  Symp	
  2010	
  

Fermi-­‐Detected	
  Sources	
  

Include many SNRs: 
➢  many middle-aged SNRs  
➢  consistent with radio, 
➢  apparently interacting with 

molecular clouds 
➢  likely pion decay… 

LAT count maps in 2-10 GeV of the 
Molecular Cloud-interacting SNRs with 
extended gamma-ray emission for front-
converting events. 



Image potential sources of galactic CRs to determine: 
➢  their acceleration processes 
➢  the composition of accelerated particles and thus,  
➢  their ability to produce high energy particles with the observed galactic CR properties 
➢  using Fermi GST. 

Indirect	
  Detec:on:	
  

One source     a catalog     a possible statistical correlation 
➢  SNR CTB 37A is one such potential source resolved by Fermi and H.E.S.S. with 

corresponding radio, IR, and X-ray data. 

➢  By combining many such sources into a catalog, we can make statistically significant 
observations about the class’s ability to produce CRs.	
  

Gamma-rays (and Fermi in particular) 
➢  Good image resolution ⇒ spatial separation of the components 

➢  Sensitivity to pion decay products (π0     γ γ )  
➢  and bremsstrahlung & inverse Compton processes 

➢  ⇒ spectral separation of acceleration processes 

➢  Survey mode gives high statistics.  
➢  In combination with full EM spectrum and spectroscopy, can begin to resolve 

potential sources’ ability to accelerate CRs. 
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Using standard Fermi science tools: 
➢  Binned likelihood analysis (gtlike) 
➢  MET: 239903654 – 287682854   = 18 month’s data 
➢  E: 0.2 – 50 GeV 
➢  4.5° ROI 
➢  Event Class: Diffuse   

Analysis	
  

to perform analysis: 
➢  Removed all other identified 

Fermi (1FGL) catalog sources 
within 4.5° ROI 

and find: 
➢  Galactic plane is relatively 

flat; source apparent and 
coincident with CTB 37A and 
radio contours. 
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Variability: None yet observed 
➢  Light curve: no long-term variability 
➢  Pulsations: none seen in  

➢  Blind search:  < ~3x10-7 ph/cm2/s  
(pulsed) 
➢   of possible counterparts (     ) 

Fermi	
  Detec:on	
  of	
  CTB	
  37A:	
  

Location: 
➢  RA  = 258.68°± 0.05 ± 0.004 
➢  Dec = -38.54°± 0.04° ± 0.02 

Extension: 
➢  0.13° ± 0.02° ± 0.04° 
➢  Significance: ~4.5σ 

Position and extension stable for  
➢ 4 of the reasonable diffuse models         

~ spanning the parameter space  
➢ high energy events (2-50 GeV) 
➢ “Front” events (inherently better 

PSF) 

Location & extension consistent with radio & H.E.S.S. data as well as nominal CTB 37A position.  
➢  Detected with 18.6σ 

Galac:c	
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➢  Radio contours 
➢  H.E.S.S. detection  

➢  Fermi detection 
➢  XMM contours 

     (MOS1: 0.2-10keV) 
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➢  XMM contours (MOS1: 0.2-10 keV) 

➢  Fermi detection 10	
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➢  Radio contours [2] 

➢  H.E.S.S. detection [1] 
Fermi Residual map with: 

CTB	
  37B:	
  Upper	
  Limit	
  

➢  Tested:  
➢  HESS position 
➢  Power law (PL) and exponentially 

cutoff PL (ECPL) 
➢  Spectral index: i = 2.1, 2.3, 2.5 
➢  Minimum γ energy: Emin = 200 MeV, 

5 GeV 
➢  Fixed Emax = 50 GeV 

➢  Flux limits are consistent for all spectral 
forms and indices 

➢  F2σ < 8x10-8 ph/cm2/s    for E = 200 
MeV – 50 GeV 

Used gtlike to determine upper limits at the HESS position. 



➢  Synchrotron emission: 
➢  Radio    (Kassim et al., 1991) 

➢  IR: Spitzer    (Reach et al., 1991) 

➢  (unconstraining) upper limit 
➢  X-ray:  

➢  XMM-Newton spectrum consistent with 
absorbed thermal emission 

➢  in agreement with XMM & Chandra analysis 
performed by HESS team 

➢  upper limit 
➢  Gamma-ray: 

➢  Fermi 
➢  HESS   (Aharonian et al., 2008) 

Mul:wavelength	
  Spectrum:	
  
Data	
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➢  Lepton population: 
➢  Assume: exponentially cutoff power law: 

➢  Ne(E) = N0,e Eγe exp(-E/Ecut,e)  
➢  Fit: N0,e, γe, Ecut,e 

➢  Hadron population: 
➢  Assume: simple power law: 

➢  Np(E) = N0,p Eγp 
➢  Fit: N0,p, γp 

➢  Magnetic field: 
➢  Constrained <1.5mG from OH maser Zeeman 

splitting observations  
➢  Fit: magnetic field intensity (B) 

➢  Gas mass: 
➢  Assume: reasonable MH = 6.5 x 104 M "

➢  Consistent with CO measurements 

➢  Determine: parameters’ scaling relations with MH 

Mul:wavelength	
  Spectrum:	
  
Model	
  

Simultaneously fit both lepton and hadron populations: 

➢  Model emission processes: 
➢  Synchrotron 
➢  Bremsstrahlung* 

➢  inverse Compton 
➢  Pion decay* 

➢  *Scaled to solar metallicity 
➢  Minimized χ2 

➢  using Powell method, results 
consistent with other methods 

➢   χ2 = 16.4 for 17 dof 
➢  1σ errors: 

➢  searched extreme values for 
which Δχ2 = 1 
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Mul:wavelength	
  Spectrum:	
  
Results	
  

➢  Lepton population: 
➢  N0,e = 3.79+3.99

-1.70 e/s/cm2/GeV/sr 

➢  γe= -1.35+0.32
-0.23 

➢  Ecut,e = 4.1+3.4
-1.7 GeV 

➢  Hadron population: 
➢  N0,p = 163.5+60.5

-137.7 p/s/cm2/GeV/sr 

➢  γp = -2.5+0.04
-0.19 

➢  Magnetic field: 
➢  B = 109+56

-49 µG 

➢  1st lower limit 
➢  Constraining upper limit 

➢  Gas mass: 
➢  Parameters’ scaling relations with MH 

➢  N0,p has slope ~1, as expected for π0 
emissivity scaling with gas mass 

➢  All other parameters showed no significant 
variation with gas mass beyond the errors. 

➢  Particle type: 
 Hadrons 

➢  Spectral index 
 1σ, consistent with γ ~ 2.1 from direct 

detection 
➢  Proton Cutoff Energy 

➢  Ep,max~1014eV 
 consistent with direct detection Emax 

~1015eV for all CR accelerators 
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➢  All other parameters showed no significant 
variation with gas mass beyond the errors. 

➢  Energetics: 
➢  Total, steady-state energy: 
➢  hadrons = 5.1+1.3

-3.6 x 1049 ergs 

➢  leptons = 2.7+4.0
-1.4 x 1048 ergs 

➢  Ecut,e = 4.1+3.4
-1.7 GeV 

➢  Find typical conversion efficiency: ~5% 
➢  η ~ (1.5-6.4)x(M/MH)-1x(d/10.3kpc)5x(ESN/1051erg) % 
➢  Consistent with HESS result when scaled to 

their mass and distance 
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Dominant	
  Emission	
  Mechanism	
  	
  

Radio	
  (VLA,	
  errors)	
  
Fermi	
  
H.E.S.S.	
  

We find within the constraints of our model, the most likely gamma-ray emission scenario 
to be hadron-dominated, with a non-negligible contribution from bremsstrahlung emission. 
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Allowed	
  Lepton	
  Scenario	
  

Radio	
  (VLA,	
  errors)	
  
Fermi	
  
H.E.S.S.	
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➢  Lepton population: 
➢  N0,e = 6.39 e/s/cm2/GeV/sr 

➢  γe= -1.49 
➢  Ecut,e = 7.0 GeV 

➢  Hadron population: 
➢  N0,p = 42.6 p/s/cm2/GeV/sr 

➢  γp = -2.35 
➢  Magnetic field:  B = 67 µG	
  

➢ at 1σ: 



➢  inverse Compton emission essentially non-existent  
➢  as ambient photon field (1.25 eV/cm3; Porter, et. al., 2008) and CMB       

(0.26 eV/cm3) are too low relative to other environmental conditions 

➢  Bremsstrahlung mainly occurs at Fermi energies  
➢  as π0 + brem cannot reproduce both the Fermi and HESS data and  
➢  we have allowed the leptons to have a cutoff above the maximum 

HESS energy 
➢  Both π0 and bremsstrahlung are necessary to reproduce the data 

Emission	
  Mechanism:	
  Similari:es	
  	
  

➢ Differentiate scenarios?  
➢  Lepton-dominated model predicts somewhat more radio emission 

in the Planck regime (30-857 GHz) 

➢  Not in the Early Release Compact Source Catalog, but probably 
has the sensitivity 

➢  would better constrain leptonic population and, thereby, the 
maximum hadronic contribution 
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Fermi-­‐Detected	
  SNRs:	
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Fermi-detected SNRs  Index 1 Index 2 EBreak (GeV) Age (yrs) Notes 

Casssiopeia A −2.1 ±0.1 -2.4** >100 330 [1] 

Tycho −2.3 ± 0.1 438 [2] 

Vela Jr. -1.87 ± 0.2 -2.1** 680 [3]  

RX J1713 -1.5 ± 0.1 -2.2** 1600 [4] Lepton-dominated 

CTB 37A −2.28 ± 0.1 -2.3 ± 0.3** 1500? [5] 

W49B −2.18 ± 0.04  
−2.29 ± 0.02 

−2.9 ± 0.2 4.8 ± 1.6 1k-4k [6]  
PL disfavored at 4.4σ 

Cygnus Loop -1.83 ± 0.06 -3.23 ± 0.19 -2.39 ± 0.26 20k [7] No clear MC interaction 

IC 443 −1.93 ± 0.03 −2.56 ± 0.11 3.25 ± 0.6 3-4k or 20-30k [8] 

W44 −2.06 ± 0.1  −3.02 ± 0.22 1.9 ± 0.5 ~20k [9] 

W51C −1.97 ± 0.08 -2.44 ± 0.09 1.9 ± 0.2 ~30k [10] 

W28 (N) (and G6.5-0.4) −2.09 ± 0.36 −2.74 ± 0.15 1.0 ± 0.2 35-150k (40k) [11] 

1 for Power Law or I1 for Broken Power Law 
2 See Giordano, this conference. 
**from VHE measurement 
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➢  Fermi-LAT is detecting an increasing number of SNRs 
➢  allows us to access a unique window in emission associated with hadronic processes 
➢  with multiwavelength data, we better constrain particle acceleration and 

environmental conditions. 
➢  One example: SNR CTB 37A 

➢  detected at 18.6σ, slightly extended, stable for diffuse models & data subsets 
➢  emission consistent with H.E.S.S., X-ray, IR, and radio data 
➢  no long-term (blazar) or short-term (pulsation) variability 

➢  SNR CTB 37A: Multiwavelength model 
➢  Simultaneously fit lepton & hadron populations + B-field to data 

➢  both π0 and bremsstrahlung are required to reproduce the data 
➢   => CTB 37A is accelerating hadrons 
➢  B-field: B = 109+56

-49 µG: 1st lower limit, constraining upper limit. 
➢  Conversion efficiency: η~5% 

➢  Fermi-LAT SNRs: so far most middle-aged SNRs detected to date…  
➢  are interacting with Molecular Clouds 
➢  likely hadronic-dominant emission mechanism 

➢  A statistically significant catalog of such objects will permit us to more precisely compare 
SNR acceleration properties to the directly measured CRs themselves, allowing us to 
illuminate the 100-year mystery of CR origin. 

Conclusions:	
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