Direct detection of Cosmic Rays L. Derome (LPSC Grenoble)

CRISM, june 2009

Plan I will focus on: Recent (<3 years) measurements of e⁻/e⁺ fluxes and positron fraction. > Recent (<3 years) measurements of cosmicray nuclei fluxes.

Future experiments and prospects

e⁺- e⁻ Measurements

Experimental challenge

- ➢ Rare signal → large acceptance
 Note: A = A = A = A
 - \rightarrow long exposure time
- Huge background from p component e⁻/p ~1% @ 1 GeV, ~0.1% @ 1 TeV, e⁺/e⁻ ~0.1
 - \rightarrow optimal e/p separation
 - \rightarrow charge sign measurement

Experimental measurements

- All electron spectrum (e⁺ + e⁻) → e/p rejection
- Positron fraction (e⁺/e⁻+e⁺) → e/p rejection, charge identification
- Absolute fluxes e⁺, e⁻ → e/p, charge identification.

ATIC Instrument

- Balloon experiment
- 3 Antarctic flights

12/28/00 - 1/13/01 (ATIC 1) 12/29/02 - 1/18-03 (ATIC 2) 12/27/07 - 1/15/08 (ATIC 4)

How are electrons measured ?

- Silicon matrix identifies charge
- Excellent energy resolution ±2% (Deep BGO Calorimeter)
 - \rightarrow Key for identifying spectral features
- Key issue: Separating protons and electrons
 - Use interactions in the target
 - Energy deposited in the calorimeter
 - Shower longitudinal and transverse profile
 →Reject all but 1 in 5000 protons

ATIC Bump

The ATIC e⁻+e⁺ results exhibit a "feature":

- Sum of data from both ATIC 1 and ATIC 2 flights
- "Feature" at about 300 800 GeV
- Significance is about 3.8 sigma
- Also seen by PPB-BETS

ATIC Bump

ATIC-4 with 10 BGO layers has improved e ,p separation.

"Bump" is seen in all three flights.

Significance for ATIC1+2+4 is 5.1 sigma

HESS

- Ground based atmospheric Cherenkov telescope array for gamma-ray astronomy
- for e⁻+e⁺:
 - Observes off-source regions of sky.
 - Separates proton background by 'random forest' approach using simulations
 - \rightarrow Systematic uncertainty
 - Huge collecting area
 → High statistic results
 - Energy resolution ~ 15 %
 - Energy threshold > 100 GeV

High Energy (> TV) HESS Analysis

 \rightarrow Shows a rapid fall off in the spectrum beyond TeV energies.

L. Derome, CRISM, June 2011

Low Energy (0.34 – 0.7 TeV) HESS Results

Astronomy and Astrophysics, 508, 561, December 2009

→ Considering the systematic, statistical uncertainties and the HESS energy threshold, HESS and ATIC results are not clearly incompatible.

Fermi-LAT

FERMI-LAT: Gamma-Ray Space Telescope

- Anti-Coincidence
 Detector
- Tracker
- Calorimeter

Measuring (e^++e^+) in FERMI-LAT:

- Energy resolution: ~20%
- Large acceptance: 2 m²sr at 300 GeV
- p/e rejection factor: ~10³
- Hadronic contamination: up to 20 % at high energy.

Launch 11. jun 2008 Nominal operations: Aug 4 2008

Fermi-LAT e⁺+e⁻ flux

- High statistics \rightarrow errors dominated by systematic uncertainties
- Fermi data do not confirm the ATIC Bump
- Still indicates an excess above 100 GeV

PAMELA

 PAMELA installed on Russian satellite Resurs-DK1, inside a pressurized container.

- Mission started on June 2006, extended to 5 years total lifetime.
- Magnetic spectrometer
 → e⁺/e⁻, anti-p/p identification
- Calorimeter+Neutron Detector e/p rejection

PAMELA cosmic-ray e⁻ Flux

PAMELA positron fraction

At low energies, results are systematically lower than data collected in 1990's:
→This is interpreted as the effect of charge-sign dependent solar modulation.

•At high energies data show a significant increase with energy.

PAMELA positron ratio

But the increase with energy not explained by standard (steadystate) models of secondary production of cosmic rays.

Pamela Antiproton

PAMELA observation of the antiproton flux

Short summary of data

 In e⁺/(e⁻+e⁺) ratio and e⁺+e⁻ flux: excess in addition to the background model.

(Some experimental results still not compatible)

- Antiproton flux compatible with a pure secondary component.
- \rightarrow need for e⁺/e⁻ additional source
 - Dark Matter annihilation: simplest dark matter scenarios are strained:
 - Need for a strong boost factor.
 - Leptophilic channel to not overproduce antiproton.
 - TeV and higher mass favored.
 - Nearby pulsars: natural sources of e⁻/e⁺, readily reproduce the data.

Pulsar scenario

•Each gray line corresponds to a randomly chosen set of pulsar parameters

 \rightarrow Both the PAMELA positron excess and the Fermi-LAT data are naturally explained in this scenario.

Cosmic-ray nuclei measurements

The CREAM experiment

CREAM (Cosmic Ray Energetics and Mass):

Balloon borne experiment, dedicated to high energy cosmic ray measurements between 1 TeV – 1000 TeV

- 6 LDB flights achieved: CREAM I-VI
 >100 days of cumulative exposure
- > Instrument:
 - Energy measurement: Tungsten-Calorimeter
 - Charge identification:
 - -Silicon detectors
 - -Imaging Cherenkov Camera
 - No e/p separation

CREAM Coll. : US, Korea, Italie, Mexico, France

Nuclei spectra from Cream

- Proton spectra harder than Helium spectra?
 - → Coming from different type of sources/acceleration sites?

Indication of a hardening of the spectra above ~200 GeV/n
 →Nearby sources?
 →Propagation effect?

Proton and Helium fluxes from Pamela

• Tend to confirm a spectral hardening at high energy

Summary of the data

 Many new data in the recent years, which may imply something new:

The hardening of CR nuclei spectra may challenge the conventional understanding of the acceleration and propagation of CR particles.

- → In the forthcoming years, new experiments should confirm (or not) these results with:
 - Improved statistics
 - Reduced systematic
 - Extended energy range

AMS02

Magnetic Spectrometer on ISS

AMS experiment is to perform accurate, high statistics, long duration (>10 y) measurements in space of:

- Energetic (0.1 GV few TV) charged CR
- Energetic (>1 GeV) gamma rays.
 - > Measurements of particle:
 - Rigidity: Silicon Tracker in permanent magnet
 - e-γ energy: Electromagnetic Calorimeter (ECAL)
 - (e/p) rejection: TRD & ECAL
 - Charge: TOF, Tracker, RICH, TRD
 - Velocity: TOF, RICH

AMS on ISS

AMS is running in nominal condition since May 19.

More than 10⁹ triggers registered

AMS02: e⁺ and e⁻

>AMS02 will provide precise absolute flux for:

- e⁺ up to 300 GeV
- e⁻ up to 1 TeV

High confidence level (e^+/p rejection factor > 10⁵ up to 300 GeV)

+Simultaneous measurement of p and search d

L. Derome, CRISM, June 2011

AMS02: Elemental flux and ratio

AMS02: charge identification from:

TOF, Silicon Tracker (Energy deposit) and RICH (Cherenkov light)

- High-precision absolute flux measurement for all elements up to Z~30 and for 200 MeV/n < E < 1 TeV/n</p>
 - \rightarrow Study of individual spectra
 - \rightarrow Complete set of data to constrain propagation models

CALET: CALorimetric Electron Telescope

CALET Mission Concept

Instrument: High Energy Electron and Gamma-Ray Telescope Consisted of

- Imaging Calorimeter (IMC)
- Total Absorption Calorimeter (TASC)

Launch: HTV: H-IIA Transfer Vehicle

 Attach Point on the ISS: Exposed Facility of Japanese
 Experiment Module (JEM-EF)

Life Time: >3 years

Mission Status Launch around 2013 in Plan

CALET Payload:

- ➤ 1 GeV ~ 10 TeV for (e⁺+e⁻)
- > 20 MeV ~ TeV for gamma-rays
- Several 10 GeV ~ 1000 TeV for nuclei
- Geometrical Factor: 1 m²sr

Japan/USA/Italie/China (PPB-BETS coll.)

CALET: All electron flux

- > All electron ($e^- + e^+$) flux up to 20 TeV
- Precise flux from GeV to TeV range
- Above 1 TeV, sensitive probe of nearby accelerating sources.

Measurement of the anisotropy in electron arrival directions due to local source

CALET: Elemental flux

Future of Balloon flights: ULDB

NASA Balloon Program is developing a Super Pressure Balloon.
 Sealed and pressurized to maintain constant altitude night and day
 0.6 million m³ balloon able to carry a one-ton instrument for 100 days

Test flight during the Antarctica campaign 08-09
>0.2 million m³ balloon (scale 1/3 model)
> Sets new flight record of 54 days

Image of the SPB taken through a telescope

First ULDB scientific flight in forthcoming years

For the future this could allow long duration mission for balloon borne experiments like CREAM.

L. Derome, CRBM, June 2011

Conclusions

> Current and future experiments in the forthcoming years:

- Space experiments: PAMELA FERMI AMS02 CALET
- Balloon experiments: CREAM

 \rightarrow ULDB: research platform for the future

- > They will provide new measurement with:
 - More statistics
 - Extended energy range

> These new data should confirm (or not) the e^+ and e^- excess and allow to investigate their origin.

- > New nuclei precise flux measurements:
 - Confirmation and detailed study of the hardening of nuclei spectra.
 - Very important to understand source & propagation mechanisms:
 - Better constrains on propagation models.
 - Better estimation of primary, secondary and exotic e⁺ and e⁻ flux.