

The $CO-H_2$ conversion factor of diffuse ISM: Bright 12CO emission also traces diffuse gas

Jérôme PETY

IRAM & Obs. de Paris

and

Harvey LISZT, Robert LUCAS

CRISM, Montpellier, 28 June 2011

CO emission is often associated to cold (10-20 K), dense ($> 10^4\, {\rm cm}^{-3}$), strongly shielded, molecular gas (Carbon is locked in CO)

M51 as seen by PdBI+30m in 12 CO (J=1-0) (Schinnerer and the PAWS team)

However, about half the CO emission in Taurus comes from warm (50-100 K), low density (100-500 cm $^{-3}$), weakly shielded, diffuse gas (carbon is mostly locked in C $^{+}$).

Taurus as seen by FCRAO-14m (Goldsmith et al. 2008)

At beginning of the $\rm N_{H_2}/\rm W_{CO}$ history (Young & Scoville 1982 and Liszt 1982), it was noted that diffuse and dense gas had similar ratio values.

Examples

```
A typical diffuse line of sight : \zetaOph N_{H_2} \simeq 5 \times 10^{20} H_2 \text{ cm}^{-2}, and W_{CO} = 1.5 \text{ K km s}^{-1} \Rightarrow N_{H_2}/W_{CO} = 3.3 \times 10^{20} H_2 \text{ cm}^{-2}/(\text{ K km s}^{-1})
```

A typical dark cloud : Ori A

```
N_{H_2} \simeq 2 \times 10^{23} H_2 \, cm^{-2}, and W_{CO} = 450 \, K \, km \, s^{-1} \Rightarrow N_{H_2}/W_{CO} = 4.4 \times 10^{20} H_2 \, cm^{-2}/(\, K \, km \, s^{-1})
```

How to measure the mean N_{H_2}/W_{CO} conversion factor in diffuse gas? 1. Considering whole Galactic lines of sight

Absorption lines against extragalactic continuum background sources.

Here NRAO150 (pety et al. 2008)

Low CO column densities

 $N_{CO} \le 2 \times 10^{16} \, \text{cm}^{-3}$ (\Rightarrow less than 7% of carbon in CO).

Either low extinction at $|b| \gtrsim 15-20^{\circ}$.

Or multi-velocity components Total $A_v \sim 5 \, \text{mag}$ but $A_v \lesssim 1 \, \text{mag}$ per component.

Total hydrogen column density from $E_{\mathsf{B-V}}$ extinction

(Schlegel et al. 1998)

 $N_{\rm H} = N_{\rm HI} + 2N_{\rm H_2} = 5.8 \times 10^{21} \rm H \, cm^{-2} \it E_{B-V}$

(Bohlin et al. 1978 and Rachford et al. 2009).

How to measure the mean N_{H_2}/W_{CO} conversion factor in diffuse gas? 2. Estimating the atomic gas fraction via HI absorption

0.1

$$\textbf{Methods} \ \left\langle f_{\text{HI}} \right\rangle = \left\langle \frac{\mathsf{N}_{\text{HI}}}{\mathsf{N}_{\text{H}}} \right\rangle \sim \left\langle \frac{\mathsf{N}_{\text{HI}}}{\int \tau_{\text{HI}} \, dv} \right\rangle \times \left\langle \frac{\int \tau_{\text{HI}} \, dv}{\mathsf{N}_{\text{H}}} \right\rangle \ \text{with}$$

Top :
$$\left\langle \frac{\int \tau_{\rm HI} \, dv}{{\rm N_H}} \right\rangle$$
 from the data.

Bottom :
$$\left\langle \frac{\mathsf{N}_{\mathsf{HI}}}{\int \tau_{\mathsf{HI}} \, dv} \right\rangle$$
 from Heiles & Troland (2003).

Remark HI absorbing gas is extremely well mixed in the interstellar gas because

Large difference in beam sizes

Reddening: 6';

HI absorption: sub-arcsecond.

But tight correlation (correlation coefficient 0.9).

Results $\langle f_{\rm HI} \rangle = 0.65 \Rightarrow \langle f_{\rm H_2} \rangle = 2 N_{\rm H_2} / N_{\rm H} = 0.35$.

 $\int \tau \, dv \, [Km \, s^{-1}]$

How to measure the mean N_{H_2}/W_{CO} conversion factor in diffuse gas? 3. Measuring the CO luminosity

Comments

At low E_{B-V} (< 0.3 mag) : CO is not reliably detected \Rightarrow not counted.

At high W_{CO} (> 10 K): Accumulation of several low- A_{V} components along the line of sight.

Computation of N_{H_2}/W_{CO}

$$\langle W_{CO} \rangle = 4.4 \,\mathrm{K}\,\mathrm{km}\,\mathrm{s}^{-1}$$

$$\langle E_{\rm B-V} \rangle = 0.89 \, \rm mag$$

$$\langle f_{\rm H_2} \rangle = 0.35$$

- $\Rightarrow N_{H_2}/W_{CO} = 2.04 \times 10^{20} H_2 \text{ cm}^{-2}/(\text{ K km s}^{-1}).$
- ⇒ Same mean CO luminosity per H₂ in diffuse and dense gas!

Uncertainty In diffuse gas, $0.25 \le f_{\text{H}_2} \le 0.45$

 \Rightarrow 30% overall uncertainty on the method.

Why a common CO-H₂ conversion factor for diffuse and dense gas?

Decomposition of the conversion factor
$$\frac{N_{H_2}}{W_{CO}} = \left(\frac{N_{H_2}}{N_{CO}}\right) \left(\frac{N_{CO}}{W_{CO}}\right)$$
 with

 N_{H_2}/N_{CO} : CO chemistry;

 N_{CO}/W_{CO} : Cloud structure and radiative transfer.

Diffuse gas

More than 90% of the carbon is locked in C⁺ $\langle N_{CO}/N_{H_2} \rangle = 3 \times 10^{-6}$ (Burgh et al. 2007).

LVG in subthermally excited gas (Goldreich & Kwan 1974)

- W_{CO}/N_{CO} much larger because of weak CO excitation in warm gas (60-100 K);
- $W_{CO} \propto N_{CO}$ until the opacity is so large that the transition approaches thermalization.
- \Rightarrow N_{CO}/W_{CO} $\simeq 10^{15}$ CO cm⁻²/(K km s⁻¹) (Liszt 2007).

Dense gas

All the carbon is locked in CO $\langle N_{CO}/N_{H_2} \rangle = 10^{-4}$. Consequence : $N_{H_2}/W_{CO} = \text{cst} \Rightarrow W_{CO} \propto N_{CO}$.

Why $W_{CO} \propto N_{CO}$? A bulk effect in a turbulent medium?

Comparison with ISM models (Shetty et al. 2011)

Dense gas OK.

Diffuse gas Correct radiative transfer but wrong chemistry. \Rightarrow up to 4 orders of magnitude difference in N_{H_2}/W_{CO} .

How to discriminate diffuse from dense gas?

¹²CO alone can not be used \Rightarrow which other tracers?

Usual way Molecules with higher dipole moments?

Example HCO⁺, CS, HCN.

Problem Difficult to detect.

A better way? CO isotopologues, i.e. 12 CO and 13 CO (easier to detect).

Diffuse, warm gas $T_{12}_{CO}/T_{13}_{CO} \gtrsim 10-15$ (*e.g.* Liszt & Lucas 1998).

Dense, cold gas $T_{12}_{CO}/T_{13}_{CO} \lesssim 3-5$ (*e.g.* Burton & Gordon 1978).

What is the proportion of CO emission arising from diffuse gas in our Galaxy?

Aim Estimating the luminosity of diffuse molecular gas perpendicular to the Galactic plane from the CO absorption data.

Hypothese Plane-parallel, stratified gas layer.

Two computations

- 1. Direct $\langle W_{\text{CO}_{\perp}} \rangle = 2 \langle W_{\text{CO}}(b) \sin |b| \rangle$ with b the galactic latitude; Result $\langle W_{\text{CO}_{\perp}} \rangle = 0.84 \, \text{K km s}^{-1}$.
- 2. Mean luminosity $\langle W_{CO} \rangle = 4.6 \, \text{K km s}^{-1}$; Mean number of galactic half-width along integration path $\langle 1/\sin|b| \rangle = 19.8$; Result $2 \, \langle W_{CO}(b) \rangle \, / \, \langle 1/\sin|b| \rangle = 0.47 \, \text{K km s}^{-1}$.

Comparison with Galactic surveys of CO emission

Mean CO brightness per kpc $5 \,\mathrm{K\,km\,s^{-1}/\,kpc}$ at $R_{\odot} = 8 \,\mathrm{kpc}$ (Burton & Gordon 1978). Vertical height $0.150 \,\mathrm{kpc}$ (for a single Gaussian vertical distribution of dispersion $60 \,\mathrm{pc}$, $\mathrm{Cox}\ 2005$).

Result $\langle W_{\rm CO_{\perp}} \rangle = 0.75 \,\mathrm{K\,km\,s^{-1}}$.

Potential difficulties

Local ISM geometry Bubble;

Scatter from long mean free paths.

⇒ A large fraction of CO emission could come from diffuse gas.

Is the molecular diffuse gas a distinguishable component of the local CO emission near the Galactic plane?

We still miss an all-sky survey of CO.

Interpreting a sky occupied by CO emission from diffuse gas

Correct mass estimates (for CO traced gas), But different physical interpretation!

If dense gas: small fraction of the ism volume, confined by ram or turbulent pressure, if not gravitationally bound, on the verge of forming star.

If diffuse gas: warmer, low pressure medium filling a large fraction of the ism volume, contributed more to mid-IR dust or PAH emission, probably not gravitationally bound or about to form stars.

Liszt, Pety & Lucas, A&A, 518, A45

Diffuse vs Dark gas

This work At low $E_{\rm B-V}$ (< 0.3 mag) : CO is not reliably detected \Rightarrow not counted.

Abdo et al. 2010 $E_{\text{B-V}}$ residuals after subtraction of N(HI) and W_{CO} components \Rightarrow dark gas.