Interstellar magnetic fields

Katia FERRIÈRE

Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, Toulouse, France

Cosmic rays and their interstellar medium environment CRISM-2011

Montpellier – 26 June - 1 July 2011

Outline

- Early history
- Magnetic fields in our Galaxy
 - Observational methods
 - Summary of observational results
 - Magnetic fields near the Galactic center
- Magnetic fields in external galaxies
 - Spiral galaxies
 - Elliptical galaxies
- Predictions from dynamo theory
 - Linear solutions
 - Nonlinear solutions

Outline

- Early history
- Magnetic fields in our Galaxy
 - Observational methods
 - Summary of observational results
 - Magnetic fields near the Galactic center
- Magnetic fields in external galaxies
 - Spiral galaxies
 - Elliptical galaxies
- Predictions from dynamo theory
 - Linear solutions
 - Nonlinear solutions

Early history

- Alfvén (1937)
 - Cosmic-ray confinement implies "the existence of a magnetic field in interstellar space"
- Fermi (1949)
- Hall; Hiltner (1949); Davis & Greenstein (1951)
 - Linear polarization of starlight
 - Due to elongated dust grains aligned by an interstellar magnetic field
- Kiepenheuer (1950)
 - Galactic radio synchrotron emission

Outline

- Early history
- Magnetic fields in our Galaxy
 - Observational methods
 - Summary of observational results
 - Magnetic fields near the Galactic center
- Magnetic fields in external galaxies
 - Spiral galaxies
 - Elliptical galaxies
- Predictions from dynamo theory
 - Linear solutions
 - Nonlinear solutions

Linear polarization of starlight & dust emission

- Optical starlight is polarized $\parallel \vec{B}_{\perp}$
- Infrared dust thermal emission is polarized $\perp \vec{B}_{\perp}$

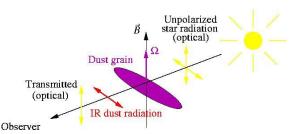


Figure Credit: Ponthieu & Lagache (2004)

Linear polarization of starlight & dust emission

Helles & Crutcher (2005)

- - Near the Sun : \vec{B} is nearly azimuthal $(p \simeq -7^{\circ})$

Zeeman splitting

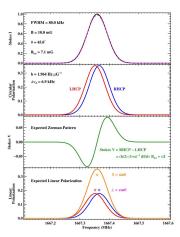


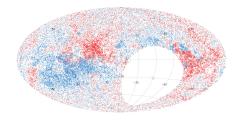
Figure Credit: Robishaw & Heiles

Stokes parameter V gives B_{\parallel} in neutral regions

- In atomic clouds : $B \sim a \text{ few } \mu G$

- In molecular clouds :

$$B \sim (10 - 3000) \,\mu\text{G}$$


Faraday rotation of point sources

$$\Delta \theta = \text{RM } \lambda^2$$
 where $\text{RM} = C \int n_e B_{\parallel} dl$

 \Rightarrow RM probes B_{\parallel} in ionized regions

RMs of pulsars & EGRSs with $|b| < 8^{\circ}$ (Han 2009)

RMs of EGRSs with $\delta > -40^{\circ}$ (Taylor et al. 2009)

Faraday rotation of point sources

In ionized regions

 $-\vec{B}$ has regular & turbulent components

Near the Sun : $B_{\text{reg}} \simeq 1.5 \,\mu\text{G}$ & $B_{\text{turb}} \sim 5 \,\mu\text{G}$

- In Galactic Disk : \vec{B}_{reg} is horizontal & mostly azimuthal

Near the Sun : $p \simeq -8^{\circ}$

 $\vec{B}_{\rm reg}$ reverses direction with decreasing radius CW in local arm, CCW in Sagittarius arm, ...

- In Galactic Halo : \vec{B}_{reg} has vertical component

Toward SGP: $(B_{\text{reg}})_z \simeq +0.30 \,\mu\text{G}$ or $+0.31 \,\mu\text{G}$ Toward NGP: $(B_{\text{reg}})_z \simeq -0.14 \,\mu\text{G}$ or $0.00 \,\mu\text{G}$

(Taylor et al. 2009)

(Mao et al. 2009)

Diffuse synchrotron emission

$$\mathcal{E} = f(\alpha) \ n_{\text{rel}} \ \mathbf{B}_{\perp}^{\alpha+1} \ v^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- \Rightarrow Total intensity probes B_{\perp} (strength only)
 - Polarized intensity probes $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

TI at 1.4 GHz (25m Stockert + 30m Villa Elisa)

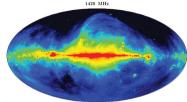
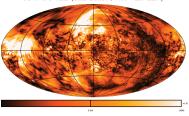



Figure Credit: Wolfgang Reich

PI at 1.4 GHz (26m DRAO+30m Villa Elisa)

Wolleben et al. (2005)

Diffuse synchrotron emission

$$\mathcal{E} = f(\alpha) \ n_{\text{rel}} \ \mathbf{B}_{\perp}^{\alpha+1} \ v^{-\alpha} \quad \& \quad \vec{\mathcal{E}} \perp \vec{\mathbf{B}}_{\perp}$$

- \Rightarrow Total intensity probes B_{\perp} (strength only)
 - Polarized intensity probes $(\vec{B}_{ord})_{\perp}$ (strength & orientation)

TI at 1.4 GHz (25m Stockert + 30m Villa Elisa)

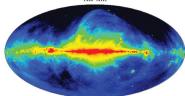
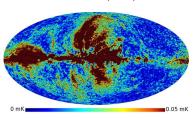



Figure Credit: Wolfgang Reich

PI at 23 GHz (WMAP)

Jansson et al. (2009)

Diffuse synchrotron emission

In general ISM

```
\ensuremath{\text{@}} - Near the Sun : B_{\text{ord}} \sim 3 \, \mu\text{G} \, \& \, B_{\text{tot}} \sim 5 \, \mu\text{G}
```

- In Molecular Ring : $B_{\text{tot}} \sim 7 \,\mu\text{G}$

- In Galactic Disk : \vec{B}_{ord} is horizontal

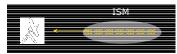
- In Galactic Halo : \vec{B}_{ord} has vertical component

- Global spatial distribution : $L_{\rm B} \sim 12~{\rm kpc}$ & $H_{\rm B} \sim 4.5~{\rm kpc}$

Faraday tomography

Faraday rotation of background point source

$$\Delta \theta = {
m RM} \; \lambda^2 \;\;\; {
m with} \;\;\; {
m RM} = C \; \int n_{
m e} \; B_{\parallel} \; dl \;\;\; {
m (rotation \, measure)}$$



Faraday rotation of diffuse synchrotron emission

Synchrotron emission & Faraday rotation are spatially mixed

$$\vec{P}(\lambda^2) = \int \vec{P}(\Phi) e^{2i\Phi\lambda^2} d\Phi$$
 with $\Phi = C \int n_e B_{\parallel} dl$ (Faraday depth)

$$\mathscr{F}$$
 Fourier transform of polarized intensity : $\vec{P}(\lambda^2) \rightarrow \vec{P}(\Phi)$

Credit: Marijke Haverkorn

Summary of observational results

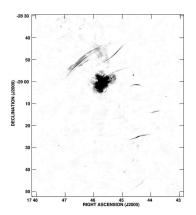
Magnetic fields near the Galactic center

Faraday tomography

Also known as rotation measure synthesis

(Burn 1966; Brentjens & de Bruyn 2005)

Figure Credit: Maik Wolleben


Summary of observational results

- Near the Sun
 - \vec{B} is horizontal & nearly azimuthal $(p \simeq -7^{\circ}, -8^{\circ})$
 - $-B_{\rm reg} \simeq 1.5 \,\mu{\rm G}$, $B_{\rm ord} \sim 3 \,\mu{\rm G}$, $B_{\rm tot} \sim 5 \,\mu{\rm G}$
- In Galactic Disk
 - \vec{B}_{reg} is horizontal & mostly azimuthal
 - \vec{B}_{reg} reverses direction with decreasing radius
- In Galactic Halo
 - \vec{B}_{reg} has vertical component
- Global field configuration
 - Azimuthal structure: neither pure ASS nor pure BSS
 - Vertical symmetry : probably sym in disk & antisym in halo

Magnetic fields near the Galactic center

Detection of non-thermal radio filaments (Yusef-Zadeh & Morris 1987 ...)

(Nord et al. 2004)

Magnetic fields near the Galactic center

- Non-thermal radio filaments
 - * Morphology & radio (synchrotron) polarization $\vec{B} \parallel \text{filaments} \implies \vec{B} \perp \text{GP}$
 - * Dynamical argument
 No distortion ⇒ B ≥ 1 mG
 - * Radio (synchrotron) intensity $B_{\text{equip}} \sim (50 200) \,\mu\text{G}$
- In diffuse ISM
 - * Pressure-balance argument

$$B_{\rm in} \sim B_{\rm out} \quad \Rightarrow \quad B \sim 1 \text{ mG}$$

Diffuse synchrotron intensity

$$B_{\rm equip} \sim 10 \, \mu {\rm G}$$

- In dense molecular clouds
 - * FIR/submm (dust thermal emission) polarization \vec{B} is nearly || GP

Outline

- Early history
- Magnetic fields in our Galaxy
 - Observational methods
 - Summary of observational results
 - Magnetic fields near the Galactic center
- Magnetic fields in external galaxies
 - Spiral galaxies
 - Elliptical galaxies
- Predictions from dynamo theory
 - Linear solutions
 - Nonlinear solutions

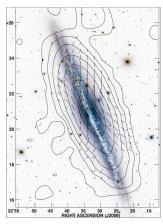
Spiral galaxies

- Observational methods
 - Synchrotron emission (total & polarized)
 - Faraday rotation
- Observational results
 - All spirals have large-scale, regular / ordered \vec{B}
 - In disk : $B_{\text{ord}} \sim (1-5) \,\mu\text{G}$ & $B_{\text{tot}} \sim (5-15) \,\mu\text{G}$ In halo : $B_{\text{tot}} \lesssim 10 \,\mu\text{G}$
 - Edge-on spirals \rightarrow In disk : \vec{B}_{ord} is horizontal In halo : \vec{B}_{ord} has vertical component
 - Face-on spirals $\rightarrow \vec{B}_{ord}$ follows spiral arms

Face-on spiral galaxy: M51

TI contours + \vec{B} vectors at λ 6 cm (100m Effelsberg + VLA)

Optical image (HST)

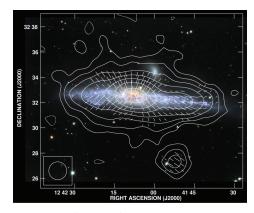


Fletcher et al. (2009)

Edge-on spiral galaxy: NGC 891

TI contours $+ \vec{B}$ vectors at λ 3.6 cm (100m Effelsberg)

Optical image (CFHT)



© MPIfR Bonn (Krause 2009)

Edge-on spiral galaxy: NGC 4631

TI contours $+ \vec{B}$ vectors at λ 3.6 cm (100m Effelsberg)

Optical image (Misti Mountain)

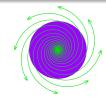
© MPIfR Bonn (Krause 2009)

Elliptical galaxies

- Observational methods
 - Synchrotron emission (total & polarized)
 - Faraday rotation
- Observational results
 - No large-scale, regular \vec{B} Only small-scale, turbulent \vec{B}
 - $B_{\text{tot}} \sim \text{a few } \mu G$

Outline

- Early history
- 2 Magnetic fields in our Galaxy
 - Observational methods
 - Summary of observational results
 - Magnetic fields near the Galactic center
- Magnetic fields in external galaxies
 - Spiral galaxies
 - Elliptical galaxies
- Predictions from dynamo theory
 - Linear solutions
 - Nonlinear solutions

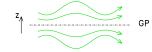

Field geometry

- In the disk
 - B_{Φ} dominant because strong differential rotation
 - $-B_R \sim 0.1 B_{\Phi}$
 - $B_Z < B_R$, B_{Φ} because disk geometry
 - Reversals in B_{Φ} e.g., if strong $\partial \Omega / \partial Z$
- In the halo
 - $B_Z \sim B_R$ because spherical geometry
 - B_{Φ} large if strong differential rotation
 - B_R, B_Z large if Galactic wind
- Near the center
 - $B_Z \sim B_R$ because spherical geometry
 - B_R , B_{Φ} large because strongly sheared noncircular motions
 - B_Z large if horizontal inflow or vertical outflow

Azimuthal structure

- If underlying galaxy is axisymmetric
 - \Rightarrow ASS (m = 0) is always easiest to amplify
 - Higher-order modes generally decay in time

- If external disturbance
 - \Rightarrow Possible to excite BSS (m = 1)



- If underlying spiral or bar
 - \Rightarrow Possible to excite QSS (m = 2)

Vertical symmetry (for ASS)

- Under typical galactic conditions
 - ⇒ Both S0 & A0 are amplified
- If the disk dominates
 - ⇒ S0 grows faster

- If the halo or the center dominates
 - ⇒ A0 grows faster

- At early times & in the nonlinear regime
 - ⇒ Possibly mixed S0-A0 configuration with S0 dominant in the disk

A0 dominant in the halo & near the center

Temporal behavior (for ASS)

- Under typical galactic conditions
 - S0 & A0 grow monotonically with time
 - S0 grows faster $(\gamma \sim 1 \text{ Gyr}^{-1})$
 - A0 gets more easily *oscillatory* ($\omega \sim 1 \text{ Gyr}^{-1}$)
- Factors favoring oscillatory behavior :
 - Spherical geometry (halo, center)
 - α strongly anisotropic
 - Vanishing or weak Galactic wind
 - Ω decreasing away from the midplane

Nonlinear solutions

- Field growth saturates when $B \to B_{\text{equip}}$
 - $-B_{\rm final} \lesssim 2 B_{\rm equip}$
 - $t_{\rm sat} \sim$ several Gyrs
- Final spatial configuration is *smoother* than in linear regime
- Nonlinear interactions occur between different modes
 - ⇒ Possible to amplify modes that would decay in linear regime
 - ⇒ Possible to maintain mixed S0-A0 configuration