Magnetic turbulence in the shock precursor and CR acceleration

Andrey Beresnyak, *Fellow, Los Alamos/Ruhr-Universität Bochum*

Collaborators: Alex Lazarian, Tom Jones, Huirong Yan, Grzegorz Kowal, Hui Li

CRISM 2011

CR spectrum observed on Earth (mostly isotropic):

Cosmic rays are possibly produced by supernova explosions: Baade & Zwicky 1934; Shklovskii 1953; etc.

Fermi gamma-ray sky:

There is a correlation between diffuse gamma rays and density of supernova remnants. This is actually a correlation with matter density.

CRs in the Galaxy

Energy density in our Galaxy $w_B \sim w_{CR} \sim w_{kin.} \sim 1 \text{eV/cm}^3$ Lifetime in the disk ~ 3 My, in corona 20 My (from C/B and ¹⁰Be)

 P_{CR} ~10% of supernova energy

Turbulent reacceleration (second order), e.g.:Stellar windsVsSupernovae

Tycho supernova in X-rays, *Chandra observatory*, 2002

Diffusive Shock Acceleration

Diffusive Shock Acceleration

Streaming Instability in Front of the Shock

shock

$$\frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(D_{xx} \frac{\partial f}{\partial x} \right) + \frac{p}{3} \frac{\partial u}{\partial x} \frac{\partial f}{\partial p} + \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial f}{\partial p} \right)$$

See Elena Amato's talk

Nonlinear Shock Acceleration Models

V

See, e.g., review by Malkov & Drury (2001)

Challenge of the problem:

Strongly nonlinear, supersonic fluid dynamics
Disparity of scales:

- Ratio of outer to dissipation scales of turbulence
- Ratios of r_L of thermal particle (<1eV), low energy CR (~1GeV), high energy CR (~10⁷GeV)

Codes:

Fluid codes have limited resolution, PIC codes have both limited resolution and limited statistics at high energies.

Observations:

One observation worth 1000 theories, but its not easy to make the trade.

Nonlinear Streaming Instability

The free energy of CRs will easily generate magnetic fields higher than the ISM field (5μ G).

Particle Tracing in Turbulent Fields

from Bell (2004)

Alternative to current or streaming instability

Density inhomogeneities in the ISM or stellar wind

Crab Nebula (NASA, HST)

On the density scalings see, e.g. Patrick Hennebelle's talk

Precursor Turbulence will generate magnetic fields

 $abla \rho \times \nabla P$ directly produce vorticity

MHD Dynamo

Large-scale dynamo $L(B)>L_t$ require special conditions and <u>slow.</u>

Small-scale dynamo L(*B*)<*L*^{*t*} very generic in three-dimensional dynamics and <u>fast</u>

CR shocks:

Clusters

Disk galaxies:

Kinematic Dynamo

Nonlinear Dynamo

Evolution of total magnetic energy

Astrophysical Small-Scale Dynamo

Dynamo in the shock precursor

Concepts in scattering

Scattering by existing fields Regular field

Self-scattering(instabilities), e.g. streaming instability.

Magnetic mirrors $D_{\mu\mu}$ ~const $D_{\mu\mu}/\Omega$ ~r

Anisotropic B perturbations are inefficient scatterers:

Random field

Resonant scattering

 $\langle B_i(\mathbf{k})B_i^*(\mathbf{k}')\rangle/B_0^2 = \delta(\mathbf{k}-\mathbf{k}')M_{ij}(\mathbf{k})$

"QLT" Jokipii 1966, NLT

 $D_{\mu\mu}/\Omega \sim r^{2.5}$

The instability between circularly polarized Alfven wave and the anisotropic distribution of fast particles (CRs)

$$\gamma_{\rm CR} = \pi^2 e^2 v_A \int \frac{v_{\perp}^2}{c^2} \left(\frac{\partial F}{\partial p_{\parallel}} - \frac{v_{\parallel}}{v_{\perp}} \frac{\partial F}{\partial p_{\perp}} \right) \delta(k_{\parallel} v_{\parallel} \pm \omega_C) d^3 \mathbf{p}$$

See MNRAS 373, 1195

Particle scattering and diffusion in a magnetic turbulence with outer scale

incompressible MHD simulations+ particle tracing code(Beresnyak et al 2011, ApJ)

 10^{5}

Space diffusion

Particle scattering in a precursor

Beresnyak et al 2009, ApJ 707

Comparison Between Small-Scale Dynamo and Current Instability

shock

precursor front

$$\frac{dB_{\rm cur}^2}{dB_{\rm dyn}^2} = 1.6 \times 10^{-4} \left(\frac{10^{15} \text{ eV}}{E_{\rm esc}}\right) \left(\frac{\eta_{\rm esc}}{0.05}\right) \left(\frac{L}{1 \text{ pc}}\right)$$
$$\times \left(\frac{B_0}{5 \,\mu\text{G}}\right) \left(\frac{v_{A0}}{12 \text{ km s}^{-1}}\right) \left(\frac{0.5u_{\rm sh}}{A_s(u_0 - u_1)}\right)^3$$

Summary

- Cosmic Rays in the Galaxy can be explained by diffusive acceleration in supernova shocks.
- The only efficient acceleration is nonlinear acceleration
- If ISM has density inhomogeneities (and it does!), precursor develops turbulence and generates fairly strong magnetic fields
- This mechanism is more efficient than previously suggested current instability
- Future work will quantify u_s with higher precision using MHD simulations and calculate the CR spectra using diffusion-advection equation.