Non-thermal emission from molecular clouds in the Galactic Centre:

Illumination or cosmic-rays?

R. Terrier (Astroparticule et Cosmologie - CNRS/Univ. Paris 7)

G. Ponti, A. Goldwurm, G. Bélanger, A. Decourchelle, V. Tatischeff, G. Trap, M. Morris, R. Warwick

CRISM Montpellier 2011

The Central Molecular Zone

CS (49 GHz) *Tsuboi et al. (1998)*

Central Molecular Zone (CMZ) : the central 200 pc It contains ~ 10% of Galaxy molecular matter ~ $10^7 M_{o}$ of molecular matter

Morris & Serabyn (1996)

Massive star clusters and intense star forming activity: Arches, Central, Quintuplet clusters, Sgr B2 MoC

Hard X-ray emission from the CMZ

Chandra 6.4 keV (Fe K α)

Discovery of diffuse Fe Ka 6.4 keV line from molecular clouds in the GC Sunyaev et al. (1993) Koyama et al (1996)

Integral detection of hard X-ray emission from some molecular clouds Sgr B2 (*Revnivtsev et al. 2004*) Sgr A region (*Belanger et al. 2006*)

Origin : irradiation by Cosmic Rays?

Bremsstrahlung emission of low energy CR electrons (LECRE)

e.g. Valinia et al (2000), Tatischeff et al (2001), Yusef-Zadeh et al. 2002 & 2007

Electrons energy ~100 keV

Origin : irradiation by Cosmic Rays?

Bremsstrahlung emission of low energy CR electrons (LECRE)

e.g. Valinia et al (2000), Tatischeff et al (2001), Yusef-Zadeh et al. 2002 & 2007

Electrons energy ~100 keV

bremstrahlung to Coulomb losses ratio $\sim 10^{-4}$

Requires huge CR luminosity to compensate for Coulomb losses

Inverse bremsstrahlung emission from sub-GeV protons in the CMZ e.g. Dogiel et al (2009 & 2011)

Produced by ~ 100 MeV protons

Lifetime of ~ 10^4 yrs in dense CMZ regions

Origin : XRN/Compton echo ?

X-Ray Nebula – Compton echo:

Fluorescence and Compton scattering of bright source e.g. Koyama et al. (1996), Sunyaev & Churazov (1998), Murakami et al (2000)

Origin : XRN/Compton echo ?

X-Ray Nebula – Compton echo:

Fluorescence and Compton scattering of bright source e.g. Koyama et al. (1996), Sunyaev & Churazov (1998), Murakami et al (2000)

Illumination from Sgr A*?

XMM-Newton Apr. 2007

Galactic Centre harbors a 4 10⁶ M_o black hole: Srg A*

Sgr A* very inactive in X-rays : $L_X \sim 10^{33} - 10^{35}$ erg/s $< 10^{-9} L_{Edd}!$ (e.g. Porquet et al. , 2008)

Periods of stronger activity in the past?

A past $L_x \sim 10^{39}$ erg/s a few 100 yrs ago?

Koyama et al. (1996), Revnivstev et al (2004)

Can we distinguish between CR/XRN?

- Constraints from spectra:
 - $\cdot \,\, \text{Fe K}\alpha \,\, \text{EW}$
 - · Hard X-ray continuum slope
 - · Energetics
- Variability of diffuse emission for XRN scenario:
 - · No bright enough source today to explain GMC emissions
 - Illumination from a past bright transient source
 - XRN emission has to be variable!

•Indications of variability:

Muno et al (2007), Inui et al (2009)

Non-thermal emission from the CMZ

Time variability in the Sgr B2 cloud?

Sgr B2 broad band spectrum

XRN $\Gamma = 2 \pm 0.2$ Abund = 1.3 ± 0.1 $L_{rad} = 1.1 \ 10^{39} \ (d/100 \ pc)^2 \ erg/s$

Time dependence of the hard X-ray GC emission

Integral IBIS/Isgri: 20-60 keV

Hard X-ray emission from Sgr B2 is fading!

Flux has decreased by ~40% in 7 years

Characteristic half decay time τ = 8.2 ± 1.7 yr

Terrier et al. (2010)

Sgr B2 variability seen with Chandra

March 2000

 $FeK\alpha$ flux images

Very significant flux decay all over the Sgr B2 complex (>20 pc)

Some structures completly vanished

Terrier et al. (2011)

July 2010

Sgr B2 variability seen with Chandra

FeK α flux in the central 2' of Sgr B2 divided by 3-4 in 10 yrs

EW in 2010 is still large (~1 keV)

Terrier et al. (2011)

Sgr B2 variability seen with Chandra

March 2000

Declination

Rapid variations on small scales (from the cores of Sgr B2 with densities of >10⁵ cm⁻³)

No strong variations in more diffuse regions: reflections in the cloud enveloppe? (with densities of $\sim 10^3$ cm⁻³ Lis & Goldsmith 1991)

Terrier et al. (2011)

Nature of Sgr B2 emission

Sgr B2 FeK α and hard X-ray emission is fading:

- Factor of 3-4 flux decrease in 10 years
- Characteristic timescale comparable with light crossing timescale of the cloud core (~2.5pc)

Fast time variability rules out CR as the dominant contribution Sgr B2 is a reflection nebula:

• A past 10^{39} erg/s mean activity period from Sgr A*?

Small scale variations in densest regions are stronger

Variation more limited in more diffuse regions: a steady component? Reflection by large scale cloud enveloppe

Non-thermal emission from the CMZ

Time variability in the Sgr A complex?

XMM : the central 50 pc observed for 8 years

30 pc

Some clouds see a flux decrease

Some see an increase

Spectral model: wabs(apec + edge*(PL + gaus + gaus))

Some propagation effects?

30 pc

Apparent superluminal motion

Superluminal propagation effect along the « bridge » in direction opposite to the GC

Ponti et al. (2010)

A plausible scenario: face on view

Does the bridge reflect the same event? Beginning of the flare?

G0.11-0.11 & Sgr B2 are reflecting the end of the same flare (10³⁹ erg/s)

No recent activity reflected by 50 km/s

Isochron: parabola

Ponti et al. (2010)

Conclusions

- Clear signatures of illumination by a bright transient source in the GC
 - Discovery of fast variability in several molecular clouds
 - Apparent superluminal propagation effect in one of them
 - GC molecular clouds reflect a past bright (~10³⁹ erg/s) period of activity from a single object close to the GC: Sgr A*!
- Bulk of hard X-ray emission in the CMZ not due to CR bombardment
 - Possible existence of a steady contribution: CR?
 - Reflection by more diffuse medium *must* also be present
 - · Long variation timescales expected
- Search for CR in specific regions. See R. Capelli talk

Conclusions

- Sgr A* was more than 10⁵ time brighter ~100 years ago
 - Emission then decayed quickly
 - Emission was less than 10^{36} erg/s, ~ 60 yrs ago
 - Duration of the flare?
 - · More detailed observations to constrain the duration
 - Sgr A* was in a luminosity state similar to LLAGNs
 - e.g. M81* $L_{x} = 10^{-5} L_{edd}$
 - Duty cycle and mechanisms of such flares?

Construction of a plausible scenario

Different & distant clouds varying at the same time \rightarrow 1 bright illuminating source : Sgr A* is the most likely candidate

Reconstruct past activity using emission from GC MoC:

For MoC with known positions use measured flux or U.L. to constrain activity at given time

For illuminated MoC with unknown positions: assume Sgr A* luminosity at 10³⁹ erg/s to determine their position

Parallax measurement : Sgr B2 is 130 ± 60 pc in front of Sgr A* (H_2O maser, VLBI, Reid et al, 2009)

Photons scattered by Sgr B2 were emitted 100 yrs (70-150) ago by Sgr A*

If G0.11-0.11 & Sgr B2 are illuminated by the same event:

G0.11-0.11 & Sgr B2 are on the same isochron (parabola) Both reflect the end of Sgr A* flare

20 & 50 km/s clouds are not illuminated:

Sgr A* activity low during last 60-90 yrs ($L_x < 10^{36}$ erg/s)

If the « bridge » and Sgr B2 are illuminated by the same flare (10³⁹ erg/s): Bridge located 60 pc behing Sgr A* & flare began 400 years ago?

Ponti et al. (2010)

Molecular clouds traced by CS emission

Spectral extraction regions Neutral Fe K emission line - continuum subtracted - 2000-2009 mosaic

6.28-6.53 keV image

Arches cluster

Spectral extraction results

Model: wabs \times (apec + edge \times (power-law + Gaus + Gaus))

name	nh	au	E	σ	norm_{Ga}	Г	norm_{pl}	EW	$\chi^2/{ m dof}$
	10^{22}				10^{-5}		10^{-5}		
	(cm^{-2})		(keV)	(eV)	(ph. $\rm cm^{-2} \ s^{-1}$)		(ph. keV ^{-1} cm ^{-2} s ^{-1})	(eV)	
Bridge	4 ± 3	0.26 ± 0.12	$6.409 \pm 0.002 \dagger$	$28 \pm 4 \dagger \dagger$	$4.7^{+0.3}_{-0.2}$	$1.0^{+0.4}_{-0.3}$	26^{+22}_{-13}	750	1175.1/1121
G0.11-0.11	7 ± 4	$0.03^{+0.11}_{-0.03}$	$6.411 {\pm} 0.002$	28 ± 5	7.5 ± 0.5	$1.9^{+0.3}_{-0.4}$	250^{+200}_{-130}	955	1302.0/1175
MC1	10^{+1}_{-2}	0.32 ± 0.07	6.410 ± 0.005	< 18	$1.87^{+0.18}_{-0.06}$	$0.8^{+0.4}_{-0.5}$	10^{+10}_{-5}	684	780.3/780
MC2	5^{+5}_{-4}	$0.36\substack{+0.2\\-0.15}$	$6.411 {\pm} 0.004$	30^{+7}_{-10}	$0.98\substack{+0.17\\-0.09}$	$0.9_{-0.5}^{+0.1}$	$6.3^{+0.5}_{-2}$	715	755.1/615
Model: wabs \times (power-law + apec + pexrav+ Gaus + Gaus)									
name	nh		Е	σ	norm_{Ga}	Г	norm _{pl}		$\chi^2/{ m dof}$
Bridge	4 ± 3		6.409 ± 0.002	26 ± 5	4.6 ± 0.2	2.1 ± 0.1	78^{+55}_{-34}		1179.7/1122
G0.11-0.11	6^{+2}_{-3}		$6.411 {\pm} 0.002$	27 ± 5	$7.1^{+0.4}_{-0.3}$	2.4 ± 0.2	420^{+160}_{-130}		1309.5/1176
MC1	9^{+2}_{-4}		6.410 ± 0.005	< 20	1.9 ± 0.07	1.9 ± 0.1	28^{+24}_{-15}		781.8/781
MC2	8^{+6}_{-5}		$6.409 {\pm} 0.004$	23 ± 10	1.2 ± 0.1	2.1 ± 0.2	35^{+18}_{-10}		760.0/615

TABLE 3

Best fit results of the fit of the mean spectra of the different MC. EPIC-pn and MOS data are fitted simultaneously. (Upper panel) Fit

Apparent superluminal motion

Ponti et al. (2010)