

Models of interstellar chemistry The influence of cosmic rays

CRISM 1 july 2011 Franck Le Petit LUTH - Observatoire de Paris

The Meudon PDR code

PDR code models the astrochemistry of interstellar gas

Development of a PDR code at Paris Observatory from more than 10 years.

Jacques Le Bourlot, Evelyne Roueff, Franck Le Petit, ...

Hypothesis & geometry:

- Plan-parallel
- Stationnary

The Meudon PDR code

Stationnary model solving:

- Radiative transfer: absorption in the lines of H, H₂, CO, HD, ...
 absorption in the continuum
 UV to sub-mm
- Chemistry: more than 100 chemical species
 network of more than 1000 chemical reactions
 grain surface chemistry (formation of mantles)

- Statistical equilibrium of the populations in the levels of H₂, HD, CO, HCO⁺, H₂O, CS, H₃⁺, ... takes into account: radiative and collisional excitation / de-excitations, photodissociation
- Thermal balance: heating by photoelectric effect, chemistry, cosmic rays ... cooling in the lines of atoms and molecules

The Meudon PDR code

Input parameters

- density of the medium
- intensity of the radiation field
- metallicities
- grains properties
- flux of cosmic rays

- ...

Atomic and molecular data:

- Radiative transitions: Einstein coefficients / wavelengths
- Collision rates
- Photo-reaction cross sections
- Chemical reaction rates

Solves:

- Radiative transfer
- Chemistry
- Thermal balance

Provides:

- Abundance profiles
- Gas temperature
- Excitation of atoms and molecules
- Local emissivities
- Temperature and charge of grains

- ...

Post-processing:

- Column densities
- Line intensities
- Spectra
- Spherical approximation

Public code: http://pdr.obspm.fr

Interstellar chemistry & cosmic rays

Cosmic rays have a strong influence on interstellar chemistry

- Induce desorption of molecules from grains
- stochastic heating of grains
- Production of secondary photons
- Ionize partially the gas=> can take control of the chemistry
 - (fast) ion-neutral reactions
 - no energy thresholds

Molecules directly linked to cosmic rays: OH, HD, H₃+, OH+, H₂O+, ...

Diffuse clouds

- Density: n_H ~ 100 cm⁻³
- illuminated by to the ISRF

Very interesting objects:

- observations in absorption => direct access to abundances
- small molecules => simplified chemistry => study in detail physical processes

Diffuse clouds: OH and HD

Determination of the flux of cosmic rays

(Black & Dalgarno 1973, Black et al. 1978, Federman et al. 1996, Le Petit et al. 2001)

1 Observe OH

$$H \xrightarrow{cosmic} H^+ \xrightarrow{O} O^+ \xrightarrow{H_2} OH^+ \xrightarrow{H_2} H_2O^+ \xrightarrow{H_2} H_3O^+ \xrightarrow{e^-} OH$$

n(OH) is proportional to ζ and to O/H

O/H has been determined by observations

2 Observe HD

$$H \xrightarrow{cosmic} H^+ \xrightarrow{D} D^+ \xrightarrow{H_2} HD$$

n(HD) is proportional to ζ and to D/H

$$\zeta \approx 1 - 5 \cdot 10^{-17} \text{ s}^{-1}$$

Diffuse clouds : H3+

The abundance of H3+ is also directly linked to the flux of cosmic rays

Formation:

$$H_2$$
 + cosmic \rightarrow H_2 + e^-
 H_2^+ + H_2 \rightarrow H_3^+ + H_3

Destruction: recombination with electrons

$$H_{3}^{+} + e^{-} \rightarrow ...$$

Observations : $N(H_3^+)$ / $E(B-V) \sim 10^{14}$ => 10 times higher than dense clouds

Typical model: $n_H = 100 \text{ cm}^{-3}$

$$\chi = 1$$
 $T = 60 \text{ K}$
 $\zeta = 5 \times 10^{17} \text{ s}^{-1}$
 $N_H = 10^{21} \text{ cm}^{-2}$

$$N(H_3^+) = 8 \times 10^{12} \text{ cm}^{-2}$$

	E(B-V)	N(H ₃ +)
HD 183143	1.28	~ 2 (14)
HD 20041	0.70	1.74 (14)
WR 104	2.10	~ 2 (14)
WR 118	4.13	~ 4 (14)
WR 121	1.68	1.12 (14)
ζPer	0.32	8.0 (13)

Diffuse clouds: H3+

$$n(H_3^+) = 7.76 \cdot 10^{-4} \cdot \zeta \cdot \frac{f_{H_2}^2 n_H^2}{n(e^-)} \cdot \frac{1}{1.04 \cdot 10^{-9} f_{H_2} n_H + 2.53 \cdot 10^{-7} \frac{T}{300}^{-0.5} n(e^-)}$$

- N(H₃+) as a function of ζ has maximum
- Effect of the molecular fraction and n(e⁻)

Zeta Perseus	is one of the line of sight used to get
	$\zeta \sim 1 \ 10^{-17} \ s^{-1}$

McCall et al. (2004): detection of H_3^+ towards Zeta Perseus From a simple relation between N(H3+) and ζ they find:

 $\zeta = 100 \ 10^{-17} \ s^{-1}$

7eta	Perseus	is a very	well stud	died line d	of sight
Lota	i Ciocac	io a voi y	Won otac		or orgine

Temperature of the gas: 45 - 75 K

	min	max
Н	5.7 (20)	7.1 (20)
H ₂	3.2 (20)	7.1 (20)
H ₂ (J=0)	0.53	0.66
H ₂ (J=1)	45	75
H ₂ (J=2)	2.0 (15)	1.1 (16)
H ₂ (J=3)	8.0 (13)	
H ₂ (J=4)	1.8 (17)	
H ₂ (J=5)	2.9 (15)	3.6 (15)

Observations

	Observations			
4.23 8	min	max		
Н	5.7 (20)	7.1 (20)		
H ₂	3.2 (20)	7.1 (20)		
f	0.53	0.66		
T ₀₁	45	75		
HD	2.0 (15)	1.1 (16)		
H ₃ +	8.0 (13)			
C+	1.8 (17)			
С	2.9 (15)	3.6 (15)		
CO	5.4 (14)			
CH	1.9 (13)	2.0 (13)		
CH ⁺	3.5 (12)			
C ₂	1.6 (13)	2.2 (13)		
C ₃	1.0 (12)			
CN	2.7 (12) 3.3 (12)			
NH	9.0 (11)			
0	0.2 (18)	1.0 (18)		
ОН	4.0 (13)			
S ⁺	1.7 (16)	2.3 (16)		
S	1.5 (13)	2.2 (13)		
Si ⁺	2.8 (16)	2.8 (14)		

Observations

Determination of the flux of cosmic rays

- Black, Hartquist and Dalgarno (1978)
 - 2 components models
 - cold zone : T = 45 K, $n_H = 267 \text{ cm}^{-3}$
 - warm zone: $T = 120 \text{ K}, n_H = 100 \text{ cm}^3$

$$\zeta = 2.2 \, 10^{-17} \, \text{s}^{-1}$$

- van Dishoeck & Black (1986)
 - take into account all constraints at this time
 - model with T and n_H profile

$$\zeta = 2 - 4 \cdot 10^{-17} \text{ s}^{-1}$$

- Federman & al. (1996)
 - from OH only

$$\zeta = 1.7 \ 10^{-17} \ s^{-1}$$

- McCall & al. (2004)
 - $-N(H_3^+) = 8 \cdot 10^{13} \text{ cm}^{-2}$

$$\zeta = 120 \ 10^{-17} \ s^{-1}$$

Parameters $n_H = 100 \text{ cm}^{-3}$ UV Flux : 2 * ISRF

Column density of H₃⁺

- small dependance on T
- Observations require $\zeta = 100 \ 10^{-17} \ s^{-1}$

Column density of OH

n(OH) depends strongly on T

 $H^+ + O -> O^+ + H$ $k = 6 \cdot 10^{-10} e^{-227/T} cm^3 s^{-1}$

45 K $k = 3.9 \ 10 - 12 \ cm^{+3} \ s^{-1}$

75 K $k = 2.9 \ 10 - 11 \ cm^{+3} \ s^{-1}$

Column density of HD

n(HD) does not depend on T

```
H^+ + D -> D^+ + H  k = 10^{-9} e^{-41/T} cm^{+3} s^{-1}

D^+ + H -> HD + H^+  k = 1.2 \cdot 10^{-9}
```

N(HD) is a good constraint for ζ < 10-16 s⁻¹

n(HD) is proportionnal to ζ if :

- 1) it is formed in gas phase by $D^+ + H_2$
- 2) it is destroyed by photodissociation

after the D/HD transition $HD + H_3^+ -> H_2D^+ + H$

n(HD) is no more proportionnal to ζ

Sulfur ionization

High value of ζ increases the ionization degree

Efficient recombination with electrons:

$$S$$
 + photon -> S + + e -
 S + + e - -> S + photon

 ζ = 100 10-17 s-1 \downarrow overproduction of neutral sulfur

Conclusion about the ζ Perseus line of sight

- Standard value of ζ:
 Underestimate N(H₃+) by a factor 50
- ζ = 100 times the standard value and T = 60 K
 Reproduce N(H3+) but overproduce :
 OH by a factor 4
 S by a factor 6

ζ [10 ⁻¹⁷ s ⁻¹]	H ₃ + [cm ⁻²]	OH [cm ⁻²]	HD [cm ⁻²]	S [cm ⁻²]
1	1.5 (12)	1.6 (12)	1.7 (15)	1.7 (13)
25	3.0 (13)	4.1 (13)	1.5 (16)	2.6 (13)
100	6.3 (13)	1.4 (14)	2.0 (16)	8.2 (13)
Obs.	8.0 (14)	4.0 (13)	2.0 (15) 1.1 (16)	1.5 (13) 2.2 (13)

good compromise: $\zeta = 25$ 10-17 s-1 (considering the uncertainties on the observations and the simplifications of the model.)

Interpretation of observations: use as much observations as possible

H₃⁺ in the Galactic center

Observations towards the Galactic Center
Works done by: Geballe, Oka, McCall, Indriolo, ...

From 2005, they observed level excitation of H₃⁺ on different lines of sight in the central molecular zone

They conclude to a high ionization rate by cosmic rays

Is it cosmic rays or X-rays which are responsible? (see T. Montmerle remarks at IAU Symposium 280)

Observation of (3,3), (2,2) (upper limit) and (1,1) show that H_3^+ is present in :

- diffuse medium $n_H = 50 200 \text{ cm}^{-3}$
- warm gas T = 200 300 K

The observation of H3+ not only gives access to the **cosmic rays flux** but also to the **density** and **temperature** of the medium.

Atomic and molecular data concerning H₃⁺

- Levels energies and radiative transitions
 - B. McCall PhD theses
 - Neal et al. (1996)
 - Miller & Tennyson, ApJ (1988)
 - Lindsay & McCall, JMoSp (2001)
- Collisionnal data : no precise data
 - Expression by Oka & Epp (2004)
 - Our prescription
 - Hugo et al. (2010): collision rates at low temperature (T < 50 K)
 - show existence of selection rules

Poor knowledge of H₃⁺ + H₂ collision rates

$$k_{JK}^{J'K'} = C_{JK}^{J'K'} \sqrt{\frac{g_{JK}}{g_{J'K'}}} \exp\left(-\frac{E_{JK} - E_{J'K'}}{2kT}\right)$$

$$C_{JK}^{J'K'} = C_{J'K'}^{JK} = C\left\{1 + \sum_{J''K''} \left(\frac{g_{J''K''}}{\sqrt{g_{JK}g_{J'K'}}}\right)^{1/2} \exp\left[-\frac{E_{J''K''} - (1/2)(E_{JK} + E_{J'K'})}{2kT}\right]\right\}^{-1}$$

C = 2×10^{-9} cm³ s⁻¹: Langevin rate constant for H₃⁺ + H₂

		p-H ₃ ⁺ p-H ₂	p-H ₃ ⁺ o-H ₂	o-H ₃ ⁺ p-H ₂	o-H ₃ ⁺ o-H ₂
p-H ₃ ⁺	p-H ₂	1.89(-9) 0.00	8.16(-10) 164.9	F	5.88(-10) 198.2
p-H ₃ ⁺	o-H ₂	2.98(-10) -0.69	1.13(-9) -0.19	3.46(-10) -0.69	8.03(-10) 32.6
o-H ₃ ⁺	p-H ₂	F	1.50(-9) 136.2	1.84(-9) -0.26	8.84(-9) 170.0
o-H ₃ ⁺	o-H ₂	1.04(-10) 0.00	4.00(-10) -0.19	9.67(-11) -0.14	1.29(-9) 0.07

Key program PRISMAS (M. Gerin et al.)

Search for hydrids in diffuse medium

Among them: OH+, H₂O+

Chemistry initiated by cosmic rays

O cannot react with H₂ for T < 300 K

Detection of OH+ and H₂O+

Neufeld et al. (2010), Gerin et al. (2010)

Unexpected result : $OH^+ / H_2O^+ = 3 - 15$

This means that dissociation with electrons compete with H₂ reactions

$$O \xrightarrow{H^{2}} O^{+} \xrightarrow{H_{2}} O \xrightarrow{H^{2}} H_{2}O^{+} \xrightarrow{H_{2}} H_{3}O^{+}$$

$$cosmic \xrightarrow{H} e^{-} \qquad e^{-}$$

$$\frac{n(OH^+)}{n(H_2O^+)} = 0.63 + \frac{0.11}{f_{H_2}} \left(\frac{T}{300}\right)^{-0.5}$$

The ratio does not depend directly on ζ but on f_{H2} and T

The lower the density, the higher N(OH+) / N(H2O+) depends on the flux of cosmic rays

High flux of cosmic rays helps to maintain a high OH+ / H2O+ ratio

Other explanation: time dependent effect

Liszt (A&A - 2007) predicted the abundance of OH⁺

He showed that OH+ could be quite abundant before the gas reaches a steady state.

Conclusions

Diffuse interstellar clouds are wonderful places to study cosmic rays chemistry

To interpret observations:

simple formula are nice, but it is even better to:

- try to gather as much constraints as possible
- try to build a consistent model with more constraints as parameters

We have now several observations that shows that:

- zeta is a few 1E-16 up to 1E-15 in some diffuse interstellar clouds
- the density of diffuse clouds can be quite low
- OH+ and H₂O+ seems to be present in low density, low molecular fraction clouds
- H₃⁺ is a wonderful molecule
 - flux of cosmic rays
 - density of the gas
 - temperature of the gas

but we need its collision rates.

Future developments of the PDR code http://pdr.obspm.fr

- Implementation of X-rays physics
- Better implementation of cosmic rays
 - Energy deposit of supra-thermal electrons
 - stochastic heating of grains
 - effect on grain surface chemistry

ANR Sympatico

