ENERGY DEPOSITION IN HORNS

Christoph Bobeth IPHC Strasbourg

Phone meeting - 30th June 2010

OUTLINE

- Energy deposition in horn with integrated target
 - ⇒ single conic horn with single skin, Al and AlBeMet optimal radius for joining inner (AlBeMet) and outer (Al) parts
- Energy deposition in horn
 - ⇒ single conic horn with double skin and Water channel

Energy deposition single conic horn integrated target

PURPOSE

horn with integrated target

- ⇒ conducting low-Z target material: Be, Al, AlBeMet
- ⇒ thermal studies (Benjamin Lepers): rule out Al

Options:

- A) whole horn made of Be, AlBeMet
- B) only inner parts made of Be, AlBeMet and outer parts of Al

- ⇒ find the places (radius) where to join both pieces
 - → depends on energy deposition in horn

GEOMETRY

- dimensions taken from optimisation of single conic horns
- target has conical shape cooling closer to the core

$$\begin{split} E_{\sigma}^{kin} &= 4.5 \text{ GeV} \\ \sigma^{bm} &= 0.4 \text{ cm} \\ L^{lg} &= 80 \text{ cm} \\ R_1^{lg} &= 1.2 \text{ cm} \\ R_2^{lg} &= 3.2 \text{ cm} \\ z^{lg} &= 0 \text{ cm} \\ L_2^{hn} &= 60 \text{ cm}, \\ L_2^{hn} &= 100 \text{ cm}, \\ R_2^{hn} &= 50 \text{ cm}, \\ R_2^{hn} &= 50 \text{ cm}, \\ t_1 &= 1.0 \text{ cm}, \\ t_2 &= 300 \text{ kA} \end{split}$$

single skin, thickness: front face t_1 , inner cond. t_2 , exit face t_3 , outer cond. t_4

INTEGRATED ENERGY DEPOSITION

Integrated energy deposition in parts of the horn @ 4 MW, $E^{kin} = 4.5 \text{ GeV}$

region	Al	AlBeMet
	[kW]	[kW]
target	369	262
front face	5.67	3.05
exit face	0.50	0.35
inner cond - straight section	16.53	13.10
inner cond - conic section	10.34	7.33
outer conductor	18.55	12.03
total	420.59	297.86

ENERGY DEPOSITION - DENSITY I

ENERGY DEPOSITION - DENSITY II

Energy deposition single conic horn double skin

GEOMETRY

- compare with previous results for NuFact horn
- omitted glass insulator and other details

outer skin, thickness: front face t_1 , inner cond. t_2 , exit face t_3 , outer cond. t_4 water channel t5, inner skin t6

```
E^{kin} = 2.2 \, \text{GeV}
\sigma^{bm} = 0.2 \text{ cm}
I^{tg} = 30 \text{ cm}
R^{tg} = 0.75 \text{ cm}
Material^{tg} = Ho
z^{tg} = 0 \text{ cm}
L_{1}^{hn} = 32.0 cm.
L_2^{hn} = 68.0 \text{ cm},
R_1^{hn} = 2.8 \text{ cm},
R_2^{hn} = 13.0 \text{ cm},
R_3^{hn} = 21.0 \text{ cm}
t_1 = 1.0 \text{ cm},
t_2 = 0.4 \, \text{cm}
t_{3.4.5} = 0.2 \,\mathrm{cm},
t_6 = 0.6 \, \text{cm}
I = 300 \text{ kA}.
Material^{hn} = Al
```

30th June 2010

 $Material^{cool} = H_2O$.

GEOMETRY - DETAILS

double skin of horn (HNOUT, HNINN) with water cooling channel HNCOOL

ENERGY DEPOSITION

Integrated energy deposition in parts of the horn

@ 4 MW, $E^{kin} = 2.2 \text{ GeV}$

region	FLUKA results	old results
	[kW]	[kW]
target	793	
front face	25.8	67
exit face	1.90	
inner cond - straight section	105.4	78.7
inner cond - conic section	33.2	14.9
outer conductor	51.2	48.2
total	217.5	208.8
water channel total	23.4	
inner skin total	123.2	
outer skin total	80.6	

ENERGY DEPOSITION - DENSITY I

ENERGY DEPOSITION - DENSITY II

