COOLING OF THE SOLID TARGET

Benjamin Lepers IPHC Strasbourg

June 30, 2010

Benjamin Lepers ()

Meeting - WP2 - EURO_V-Strasbourg

- heat flux
- h convection coefficient range
- cooling requirements
- Cross flow
- Annular flow
- Jets

material	conductivity	σ^{bm}	Q _{beam}	Q _{elec}
	[W/mK]	[mm]	[kW]	[kW]
AI	170	4	278	60
		6	256	60
Be	90200	4	165	56.3
		6	153	56.3
AlBeMet	210	4	200	51
		6	185	51
Carbon IG 43	140	4	196	-
		6	182	-

TABLE: Total power repartition inside the Aluminium, Beryllium, AlBernet and Carbon target for $\sigma = \{4, 6\}$ mm and $P^{beam} = 4$ MW

- q_{beam} obtain with Fluka simulations (christoph)
- *q*_{elec} joule losses from Comsol AC/DC
- $Q_{beam} = \{69.5 64, 41.2 38, 50 46, 49 45.5\}$ kW for Al, Be, AlBeMet, C at $P^{beam} = 1$ MW and $\sigma = \{4, 6\}mm$

Surface heat flux $% \left({{{\rm{FLUX}}} \right) = {{\rm{FLUX}}} \right)$

FIGURE: Heat flux at the target surface r = 15 mm for Al, Be, C, AlBeMet yellow, blue, magenta, pink) and $P^{beam} = \{1, 4\}$ MW

- maximal heat flux located in z = 5 cm
- {0.75, 0.55, 0.48, 0.45}kW/cm² for AI, AIBeMet, Be and Carbon respectively at 4 MW beam power.
- $\{0.25, 0.18, 0.17, 0.12\}$ kW/cm² at 1 MW beam power.

CROSS FLOW

Energy balance:

$$q''(r = R^{tg}, z = 5cm) = \frac{Q}{2\pi R^{tg}L} = \bar{h}(T_s - T_\infty)$$
 (1)

For maximal surface temperature of $T_{smax} = 200 \,^{\circ}\mathrm{C}$

$$ar{h} \geq rac{q''}{\Delta T}$$
(2)
 $\geq \{13.8, 10, 9.4, 6.6\} kW/(m^2 K)$
(3)

q'': heat flux at the target surface,

 $q'' = \{0.25, 0.18, 0.17, 0.12\}$ kW/cm².

Total power deposited inside the targets are: $\{130, 101, 97, 46\}$ kW for AI, AIBeMet, Be and C

Assume uniform energy deposition, heat flux are:

 $\{0.17, 0.14, 0.13, 0.06\}$ kW/cm².

Using eq 2, the condition is: $\{9.4, 7.7, 7.2, 3.3\}$ kW/(m²K)

Conclusion: $\bar{h} \sim 10$ kW/(m²K)

h	{1,6.3 <i>E</i> 3}	{5,3.1 <i>E</i> 4}	{10,6.4 <i>E</i> 4}
kW/(m² <i>K</i>)/{ <i>u</i> , <i>Re</i> }			
Colburn	6	23	40
Dittus-bolter	7	25	44
Sieder and Tate	9	34	59
Gnielinski	6	28	50

 TABLE:
 Convection correlation for an annular fully developed turbulent flow, mean velocity $u = \{1, 5, 10\}$ m/s, F. Incropera and D. Dewitt

with a 2 mm annular channel ($D_i = 15$ mm and $D_0 = 17$ mm), the flow rate is: {0.28, 2.8} I/s for mean velocity {1, 10} m/s. $Re \ge 2300$, regime should be turbulent. $h \{6.6 \le \overline{h} \le 50.5\}$ kW/(m²K) for {1 \le u \le 10} m/s. to be confirm with thermal/ turbulent flow model and literature. check the water pressure to maintain liquid water. $P_s = \{1, 15, 85\}$ bars for $T_s = \{100, 200, 300\}$ °C

TEMPERATURE VERSUS CONVECTION COEFF H, BE

Beryllium_temperature Pbeam=4MW

- T_{core}^{4mm} , T_{core}^{6mm} , T_s^{4mm} , T_s^{6mm} (yellow, purple, blue, brown) for $\sigma^{bm} = \{4, 6\}$ and $P^{beam} = 4 \text{ MW}$
- $T_{core} T_{s} \simeq 900,600 \,^{\circ}\text{C}, \, \sigma = 4,6 \, \text{mm}$
- $T_{core \,\sigma=4} T_{core \,\sigma=6} \simeq 220 290 \,^{\circ}\mathrm{C}$
- high temperature
- Max temperature lower with $\sigma = 6 \text{ mm}$

- T_{core}^{4mm} , T_{core}^{6mm} , T_s^{4mm} , T_s^{6mm} (dark blue, green, pink, blue) for $\sigma^{bm} = \{4, 6\}$ and $P^{beam} = 1 \text{ MW}$
- $T_{core} T_{s} \simeq 144, 98 \,^{\circ}\text{C}, \, \sigma = 4, 6 \, \text{mm}$

•
$$T_{core \sigma=4} - T_{core \sigma=6} \simeq 55 \,^{\circ}\mathrm{C}$$

• $T_{core} \lesssim 300 \,^{\circ}\text{C} \rightarrow \bar{h} \gtrsim 8,10 \, kW/m^2 K$ ($\sigma = 6,4mm$)

Beryllium_temperature Pbeam=1MW

- locally very high heat flux removal, heat flux above 1 kW/cm²
- concentrate the jets on the high heat flux zone
- mechanical stress.
- phase change, boiling

- Study of target cooling for $\{1,4\}$ MW beam and Joule effect
- Possible for Beryllium (and also AlBeMet, Carbon)
- Ok at 1 MW with high cooling rate $\bar{h} \sim 10 kW/(m^2 K)$
- Cross flow configuration possible but need to check the pressure field; if phase change can lead to destruction.
- Turbulent annular; look feasible, check water pressure.
- Jets: feasible but could degrade the focusing performance of the horn if too much nozzles inside the magnetic field.
- Next steps

turbulent model; literature.

energy deposition in water from secondary particles;

incroperap445 F. Incropera and D. Dewitt, "Fundamentals of heat and mass transfer," School of mechanical engineering Purdue University, John Wiley and Sons, 1996, p 445.