MIMAC

MIcro-tpc MAtrix of Chambers A Large TPC for directional non baryonic Dark Matter detection

Daniel Santos

Laboratoire de Physique Subatomique et de Cosmologie (LPSC-Grenoble) (UJF Grenoble 1 -CNRS/IN2P3-INPG)

CCPM – Marseille – 23/06/2010

MIMAC:

(MIcro-tpc MAtrix of Chambers)

LPSC (Grenoble) : F. Mayet , D. Santos , C. Grignon (post-doc), J. Billard (Ph.D)

Technical Coordination : O. Guillaudin

- Electronics : G. Bosson, J-P. Richer
- Gas detector : A. Pellisier, O. Zimmermann
- Data Acquisition: O. Bourrion
- Mechanical Structure : Ch. Fourel
- Ion source : T. Lamy, J. Angot, P. Sole

CEA-Saclay (IRFU): I. Giomataris, P. Colas, A. Giganon, E. Ferrer, J-P. Mols

IRSN (Cadarache): L. Lebreton, C. Golabek

Directional Detection of Dark Matter

Direct detection requires high rejection factor against background, which need to be very precisely understood (radiopurity of materials, neutrons, ...)

Directional Detection

gives a clear and unambiguous signature for WIMP

The solar system rotates around the center of the Galaxy, through a halo of WIMPs, and towards the Cygnus constellation.

Background can not mimic such genuine events

More precisely the Deneb star

Strategy:

•use direct detection
•reconstruct Energy AND Track of the recoil nuclei
•Prove that the signal "comes from Cygnus"

CCPM - Marseille - 23/06/2010

The MIMAC project

A multi-chamber detector for Dark Matter

- •Track-Energy measurements
- •Matrix of chambers (correlation)
- •µTPC : Micromegas technology
- •³He and CF₄ gaz : σ (A) dependancy
- •Axial interaction
- •Directionnal detector

Cross section ³He- χ and event rate in MIMAC-He3 (10kg)

CCPM - Marseille - 23/06/2010

Complementarity with scalar detection

CCPM – Marseille – 23/06/2010

MIMAC: (Micro-tpc MAtrix of Chambers)

CCPM - Marseille - 23/06/2010

MIMAC chips integrated in the electronics of the prototype

96+96=192 channels Covering 3x3 cm² Autotriggered Reading it every 25ns

CCPM – Marseille – 23/06/2010

Quenching factor measurement

•Low energy ion source 1 to 50 keV

•Developped @LPSC

Micromegas µTPC

renoble)

Detection of ⁴He (recoils) of 1.5 keV !! (95% ⁴He + 5% iso) at 700mbars

QF measurement !!

IQF Measurement of ⁴He in 95% ⁴He + 5% $C_4 H_{10}$ as a function of the pressure

D. Santos et al. arXiv:astro-ph0810.1137

CCPM - Marseille - 23/06/2010

3D track alpha (radioactivity)

3D Track : 5.9 keV electron from ⁵⁵Fe

CCPM - Marseille - 23/06/2010

Recoil from 144 keV neutrons

<u>Amande facility</u> @ IRSN Cadarache -> Neutron field with energies down to a few keV

xz N 8, Length (cm) 0₀ 2000 500 1000 1500 2500 3000 3500 4000 Energy (ADC) Possibility to have H as a target Separate background from recoils

Pure isobutane 100 mbar 150 V/cm

CCPM – Marseille – 23/06/2010

MIMAC : recoil track measurements

April 2009 @ IRSN Cadarache

<u>Amande facility</u> :

•Neutron field with energies down to a few keV

CCPM - Marseille - 23/06/2010

MIMAC prototype at Cadarache (detecting neutrons by nuclear recoil)

CCPM – Marseille – 23/06/2010

6 keV recoil track (⁴He) projections 300 mbar (95% of 4He, 5% of $C_4 H_{10}$)

CCPM – Marseille – 23/06/2010

D. Santos (LPSC Grenoble)

CCPM – Marseille – 23/06/2010

New degree of freedom to discriminate recoils from electrons from 3D tracks

Normalized Integrated Straggling (NIS)

(Sum of partial deflections along the measured track, normalized by its total energy) (J. Billard et al. (2009) in preparation)

CCPM - Marseille - 23/06/2010

NIS (for recoils)

CCPM - Marseille - 23/06/2010

D. Santos (LPSC Grenoble)

NIS(for electrons)

CCPM – Marseille – 23/06/2010

Orbite solaire

Vitesse tangentielle du soleil:

- I: longitude galactique
- b: latitude galactique

 $v_{\odot}~=~220~\pm~20~{\rm km.s^{-1}}$

Direction: (I = 90, b = 0)

Constellation du Cygne

Les trois modèles de halo isotherme:

- La sphère isotrope
- La sphéroïde oblate
- L'ellipsoïde (3 axes différents)

La dispersion des vitesses est reliée à $V_0(r \rightarrow \infty) \approx 220 \text{ km.s}^{-1}$

$$\sigma_v = v_0 / \sqrt{2}$$

$$f(\vec{v}) = \frac{1}{(2\pi\sigma_v)^{3/2}} \exp\left(-\frac{(\vec{v} + \vec{v}_{\odot})^2}{2\sigma_v^2}\right)$$

Distribution maxwellienne

Equation de Boltzmann d'un gaz de particules sans collision

$$\frac{\partial f}{\partial t} + \vec{v}.\nabla f - \nabla \Phi. \frac{\partial f}{\partial \vec{v}} = 0$$

Equation de Poisson

$$\nabla^2 \Phi = 4\pi G \rho(\vec{r}) = 4\pi G \int f(\vec{r}, \vec{v}, t) d^3 \vec{v}$$

Flux de WIMP dans le référentiel terrestre en coordonnées galactique (HealPix)

coordonnées galactique (HealPix)

 10^8 événements avec E_R = [5,50] keV

30

Energie de recul de l'ordre du keV

Energie seuil de MIMAC ~ 5 keV (recul) (19F)

Spectre angulaire normalisé pour du Fluor

Spectre angulaire normalisé pour du Fluor

Méthode de vraisemblance « likelihood », sans priors

C: Distribution théorique du signal WIMP B: Distribution théorique du bruit de fond (isotrope) M: Mesure de MIMAC

statistique de Poisson

$$\mathscr{L}(m_{\chi},\lambda,\ell,b) = \prod_{i=1}^{N_{\text{bins}}} P([(1-\lambda)B_i + \lambda S_i(m_{\chi};\ell,b)]|M_i)$$

On reconstruit bien la direction du Cygne à 10° (68% CL) On obtient Nwimp = 106 ± 15 (68% CL) => Significance = 6,4

Découverte de la matière noire!

On peut en déduire une **-** contrainte sur le plan

$$(\sigma_n, m_\chi)$$

• La masse n'est pas contrainte, on a juste M>10GeV/c^2

• Lambda est relié à la section efficace

J.Billard, F.Mayet, D.S. (2010, accepted in PLB)

Exclusion plot for directional detection

J.Billard, F.Mayet ,D.S. (2010) submitted to PRD

CCPM – Marseille – 23/06/2010

MIMAC unit (1m³)

A small part of the 10x10 cm² pixelized anode (Saclay-MIMAC)

J-P. Mols et al. October 2009

CCPM – Marseille – 23/06/2010

MIMAC-CYGNUS (to have 50 evts in 3 years ...)

- The number of nuclei in 10 kg of ${}^{3}\text{He} = 3333 \text{ N}_{\text{A}}$
- In CF_4 to have the same number of ¹⁹ F we need 74 kg
- The axial cross section follows a A² dependence (factor 40 wrt ³He)
- We need 50 m^3 of CF_4 at 50mbar
- The tracks of 30 keV ¹⁹ F are roughly 1mm long at 50mbar.
 Possible to have other or alternative target as (¹H, ³He, ⁴He or ²⁰Ne) without change the detector !!

Cablage de l'anode

J. Billard

39

L'amas du Boulet

Interaction du neutralino

Provisional Timetable

- The ANR-MIMAC project has to show the elementary module of the 3D-Matrix working by the end of 2010.
- The CYGNUS design study has as the main purpose to define the 1 m3 by the end of 2012.
- These milestones will give us the design of the 50 m3 detector by 2013.
- The electronic chip necessary to read-out the pixel-anode will be defined by the end of 2010.
- The modular design will give us the possibility to run intermediate volumes during the mounting of the final detector with previous defined phases of extensions.
- The construction of the detector can be done relatively fast having no blocking problems in the design as it has been shown thanks to the ANR-Blanc Project that allow the Saclay and the Grenoble teams work together to define the elementary chamber.

MIMAC : µTPC chamber

cathod

Real size prototype

Drift space : 15 cm

Micromegas

+pixellized anod (x,y)

CCPM – Marseille – 23/06/2010

3D track measurement of an electron (5.9 keV, 350mbar)

3D track measurement of an electron of 1.5 keV (X(AI))

⁴He (6 keV) in ⁴He (100mbar) range ~ 4mm

CCPM - Marseille - 23/06/2010

Directionality of recoils measured in 3D (E ~ 120 keV)

<u>CYGNUS</u> (CosmoloGY with NUclear recoilS) <u>A large Scale Directional Dark Matter Detector</u>

List of Participants for the ASPERA call (June2009) (alphabetic order) [partner's number] **France** CNRS/IN2P3/UJF/Laboratoire de Physique Subatomique et de Cosmologie de Grenoble (LPSC) [1] CEA/Saclay/Institut sur les Lois Fondamentales de l'Univers (IRFU) [5]

Germany

University of Technology Darmstadt [4]

Spain

University of Zaragoza [3]

United Kingdom

University of Sheffield [2] University of Edinbourgh [6]

CCPM - Marseille - 23/06/2010