Super-Kamiokande latest results

Maximilien Fechner CEA/Saclay IRFU/SPP previously at Duke University on behalf of the SK collaboration

The Super-K collaboration

J.P. Cravens⁶, K. Abe¹, T. Iida¹, K. Ishihara¹, J. Kameda¹, Y. Koshio¹, A. Minamino¹, C. Mitsuda^{1,a}, M. Miura¹ S. Morivama¹, M. Nakahata^{1,3}, S. Nakavama¹, Y. Obavashi¹, H. Ogawa¹, H. Sekiya¹, M. Shiozawa¹, Y. Suzuki^{1,3}, A. Takeda¹, Y. Takeuchi¹, K. Ueshima¹, H. Watanabe¹, S. Yamada¹, I. Higuchi², C. Ishihara², M. Ishitsuka² T. Kajita^{2,3}, K. Kanevuki², G. Mitsuka², H. Nishino², K. Okumura², C. Saji², Y. Takenaga², S. Clark⁴, S. Desaj^{4,b} F. Dufour⁴, E. Kearns⁴, S. Likhoded⁴, M. Litos⁴, J.L. Raaf⁴, J.L. Stone⁴, L.R. Sulak⁴, W. Wang⁴, M. Goldhaber⁵, D. Casper⁶, J. Dunmore⁶, W.R. Kropp⁶, D.W. Liu⁶, S. Mine⁶, C. Regis⁶, M.B. Smy⁶, H.W. Sobel^{6,8}, M.R. Vagins⁶, K.S. Ganezer⁷, J. Hill⁷, W.E. Keig⁷, J.S. Jang⁸, J.Y. Kim⁸, I.T. Lim⁸, M. Fechner⁹, K. Scholberg⁹, N. Tanimoto⁹, C.W. Walter⁹, R. Wendell⁹, R.W. Ellsworth¹⁰, S. Tasaka¹¹, G. Guillian¹², J.G. Learned¹², S. Matsuno¹², M.D. Messier¹³, Y. Watanabe¹⁴, Y. Hayato^{15,1}, A. K. Ichikawa¹⁵, T. Ishida¹⁵, T. Ishida¹⁵, T. Iwashita¹⁵, T. Kobavashi¹⁵, T. Nakadaira¹⁵, K. Nakamura¹⁵, K. Nitta¹⁵, Y. Ovama¹⁵, Y. Totsuka¹⁵, A.T. Suzuki¹⁶ M. Hasegawa¹⁷, K. Hiraide¹⁷, I. Kato^{17,c}, H. Maesaka¹⁷, T. Nakaya¹⁷, K. Nishikawa¹⁷, T. Sasaki¹⁷, H. Sato¹⁷ S. Yamamoto¹⁷, M. Yokovama¹⁷, T.J. Haines^{18,6}, S. Dazelev¹⁹, S. Hatakevama¹⁹, R. Svoboda¹⁹, G.W. Sullivan²⁰, D. Turcan²⁰, A. Habig²¹, Y. Fukuda²², T. Sato²², Y. Itow²³, T. Koike²³, T. Tanaka²³, C.K. Jung²⁴, T. Kato²⁴ K. Kobavashi²⁴, M. Malek²⁴, C. McGrew²⁴, A. Sarrat²⁴, R. Terri²⁴, C. Yanagisawa²⁴, N. Tamura²⁵, Y. Idehara²⁶, M. Ikeda²⁶, M. Sakuda²⁶, M. Sugihara²⁶, Y. Kuno²⁷, M. Yoshida²⁷, S.B. Kim²⁸, B.S. Yang²⁸, J. Yoo²⁸ T. Ishizuka²⁹, H. Okazawa³⁰, Y. Choi³¹, H.K. Seo³¹, Y. Gando³², T. Hasegawa³², K. Inoue³², Y. Furuse³³ H. Ishii³³, K. Nishijima³³, H. Ishino³⁴, M. Koshiba³⁵, S. Chen³⁶, Z. Deng³⁶, Y. Liu³⁶, D. Kielczewska^{37,6}, H. Berns³⁸, R. Gran^{38,20}, K.K. Shiraishi³⁸, A. Stachyra³⁸, E. Thrane³⁸, K. Washburn³⁸, R.J. Wilkes³⁸

(The Super-Kamiokande Collaboration)

¹ Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Gifu, 506-1205, Japan ² Research Center for Cosmic Neutrinos, Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan ³ Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582, Japan. Department of Physics, Boston University, Boston, MA 02215, USA ⁸ Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA ⁶ Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697-4575, USA Department of Physics, California State University, Dominguez Hills, Carson, CA 90747, USA ⁸ Department of Physics, Chonnam National University, Kwanoju 500-757, Korea Department of Physics, Duke University, Durham, NC 27708, USA ¹⁰ Department of Physics, George Mason University, Fairfax, VA 22030, USA ¹¹ Department of Physics, Gifu University, Gifu, Gifu 501-1193, Japan ¹² Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, USA ¹⁵ Department of Physics, Indiana University, Bloomington, IN 47405-7105, USA ¹⁴ Physics Division, Department of Engineering, Kanagawa University, Kanagawa, Yokohama 221-8686, Japan ¹⁸ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ¹⁶ Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan ¹⁷ Department of Physics, Kyoto University, Kyoto 606-8502, Japan ¹⁸ Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, NM 87544, USA ¹⁹ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA ⁰ Department of Physics, University of Maryland, College Park, MD 20742, USA ²¹ Department of Physics, University of Minnesota, Duluth, MN 55812-2496, USA ²² Department of Physics, Miyagi University of Education, Sendai, Miyagi 980-0845, Japan ²³ Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8602, Japan ²⁴ Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA ²⁶ Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan ²⁶ Department of Physics, Okayama University, Okayama, Okayama 700-8530, Japan ²⁷ Department of Physics, Osaka University, Toyonaka, Osaka 560-0049, Japan ²⁸ Department of Physics, Seoul National University, Seoul 151-742, Korea ²⁹ Department of Systems Engineering, Shizuoka University, Hamamatzu, Shizuoka 432-8561, Japan ³⁰ Department of Informatics in Social Welfare, Shisuoka University of Welfare, Yaizu, Shisuoka, 425-8611, Japan ³¹ Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea ³² Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi 980-8578, Japan ³³ Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan ³⁴ Department of Physics, Tokyo Institute for Technology, Meguro, Tokyo 152-8551, Japan 35 The University of Tokyo, Tokyo 113-0033, Japan ³⁶ Department of Engineering Physics, Tsinghua University, Beijing, 100084, China ³⁷ Institute of Experimental Physics, Warsaw University, 00-681 Warsaw, Poland ³⁸ Department of Physics, University of Washington, Seattle, WA 98195-1580, USA

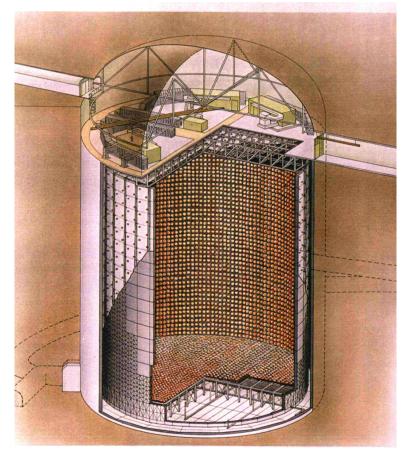
~ 130 authors from 35 institutions

The SK detector

World's largest water Cherenkov detector (to-date)

Located under Mt. Ikenoyama, Gifu prefecture, Japan at 1km (2700 mwe) rock overburden

Cylindrical shape, 50 kton of purified water


Fiducial mass : 22.5 kton

Optical separation between :

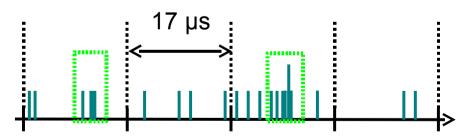
Inner Detector (ID): ~32kton ~11,129 large 20 inch PMTs Outer Detector (OD): ~1,885 smaller 8 inch PMTs

2m thick veto around the ID

Physics : MeV to TeV scale Solar neutrinos Supernovae (and relic SN) Atmospheric neutrinos Proton decay [H. Nishino's talk]

PERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYO

12 years since first data !



SK-I (1996 to 2001) 40% photo-cathode coverage Nov 2001 : accident...

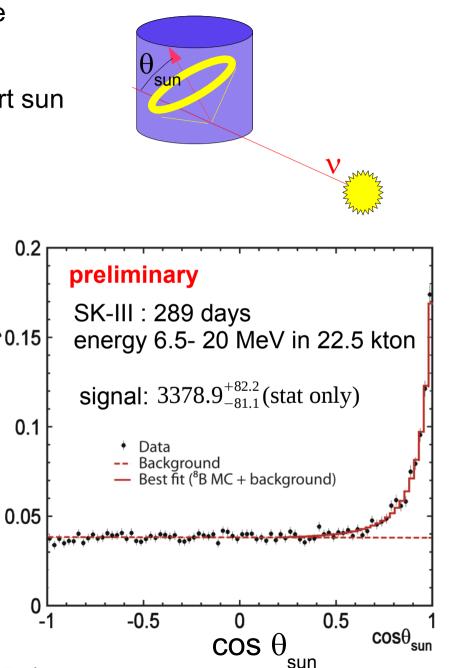
SK-II (2003 to 2005) 20% photo-cathode coverage
SK-III (2006-2008) Full reconstruction, back to 40%
NEW: SK-IV (fall 2008-....) Electronics upgrade in Sept

Electronics upgrade : new DAQ system

- Same readout for ID & OD
- Better performance :
 - Dynamic range
 - Multi hits
 - Reduce SPE threshold
- Use ethernet for read out
- No hardware trigger :
 - record every hit by periodic clock signal 60 kHz x 17 µs TDC window
 - Apply software triggers : variable event window

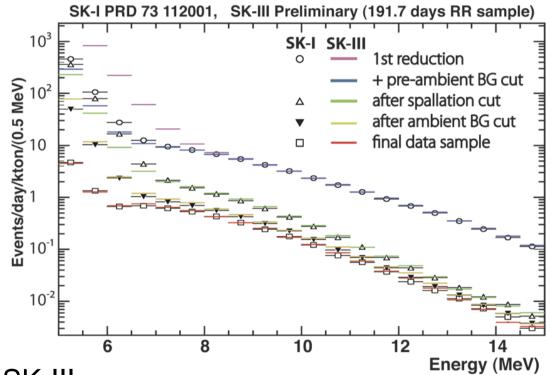
- Being installed as we speak (sept 2008)
- ~ 6 months of commissioning

FULLY READY FOR FIRST T2K BEAM IN 2009

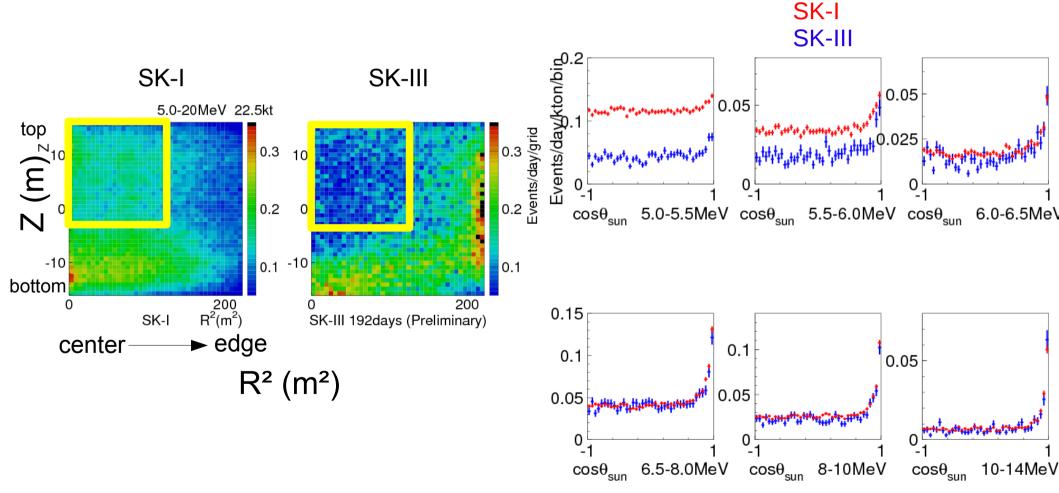

Solar neutrino results

Solar v at SK

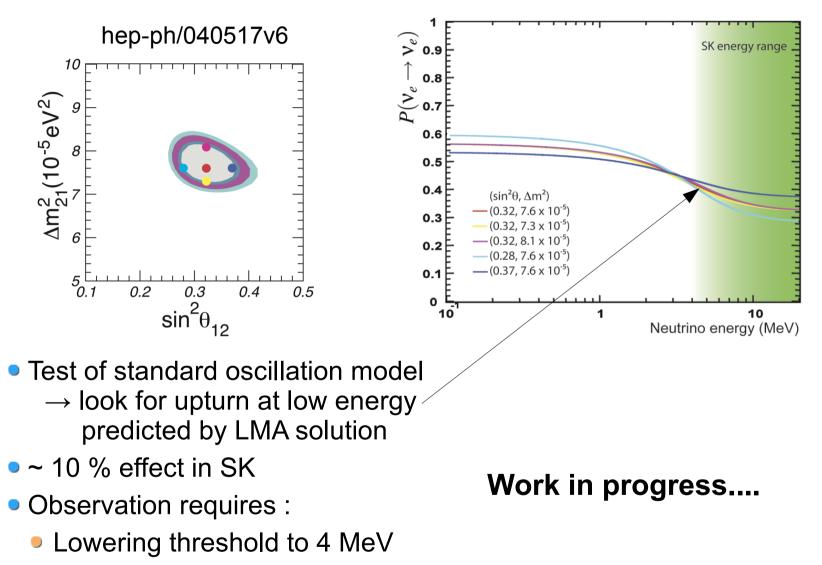
- Detection of solar ⁸B neutrinos via $v + e \rightarrow v + e$
- Sensitive to all neutrino flavors, but mostly v_{p}
- Reconstruct recoil electrons : energy & angle wrt sun
- Measurement goals :
 - Total flux
 - Day night differences
 - Spectrum
- Super-K II 's lower coverage prompted improvement of reconstruction tools
- Now applied to SK-I & SK-III
- Observed rate : ~ 15 v_{a} / day above 5 MeV


SK-III flux consistent with SK-I & SK-II (flux measurement being prepared)

Event/day/kton/bin


SK-III & SK-I

- SK-I "full final" sample
 - Energy > 6.5 MeV
 - Livetime 288.9 days
- SK-III RR (Radon reduced sample)
 - Period from jan 07 to march 08 livetime 191.7 days
 - high radon activity periods rejected
 - 100% trigger efficiency above 5 MeV
- Good agreement between SK-I & SK-III



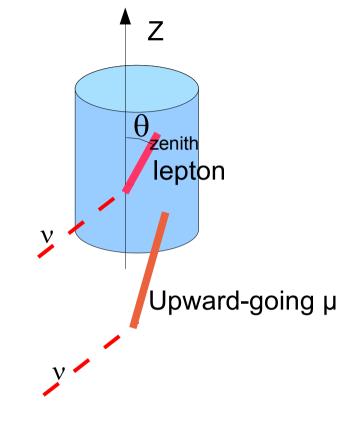
Improved Backgrounds

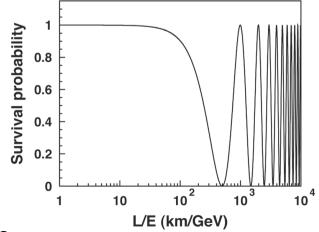
- Background in SK-III's central region is lower than in SK-I thanks to improvements in the water system
- Threshold below 5 MeV

Prospects for SK-IV

- Reducing energy correlated systematics (to ½ SK-I)
- Running longer...

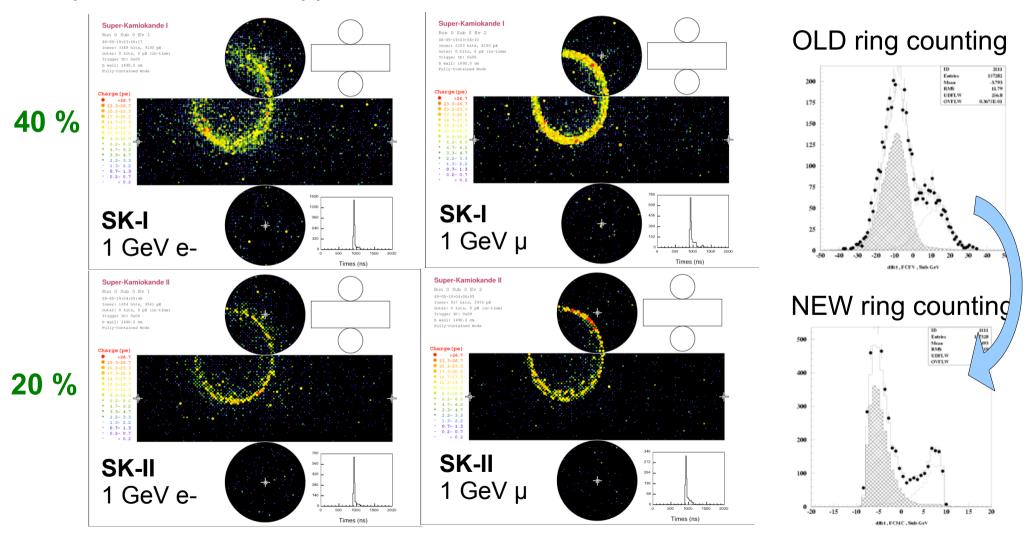
Atmospheric neutrino results


Atmospheric neutrino analyses

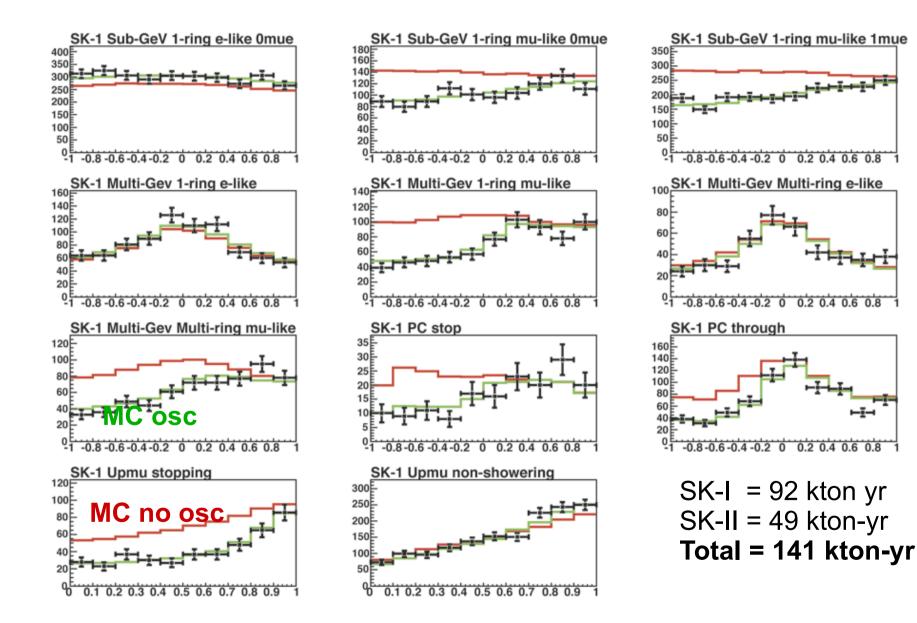

Zenith angle analysis :

- Reconstruct leading lepton track and upward-going muons
- Angular correlation with incoming neutrino
- Fit Data & MC zenith angle distributions

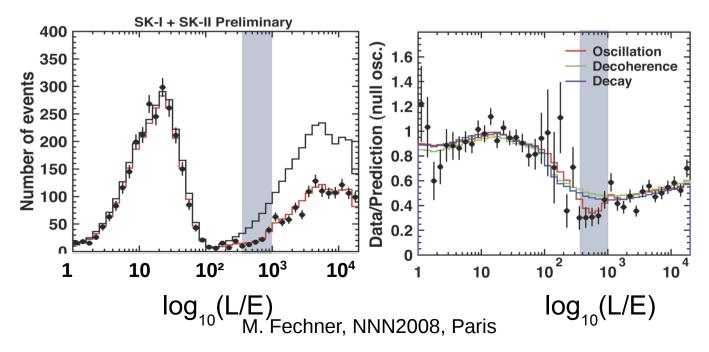
L/E analysis :


- Reconstruct leading lepton track
- Estimate neutrino flight length L and energy E
- Look for oscillatory shape in L/E distribution

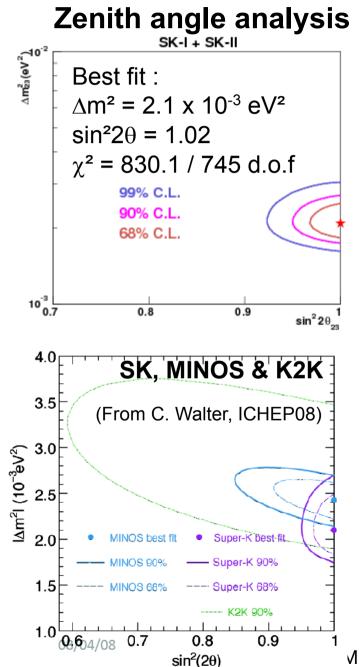
Reconstruction improvements

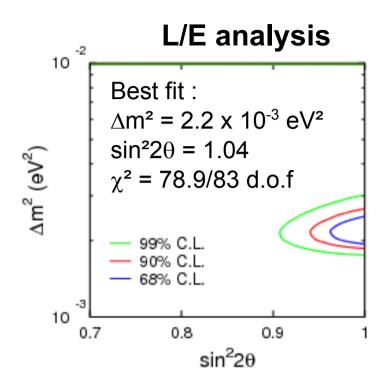

SK-II only had 20% coverage : careful studies of vertex fitters, ring counting and particle ID algorithms were needed Improvements were applied to SK-III and SK-I

Other improvements

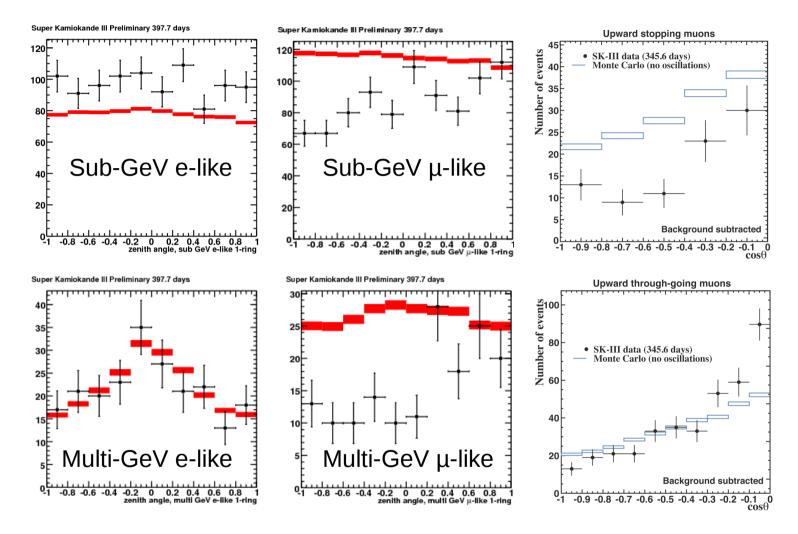

- New cosmic ray flux model
 - matches cosmic muon data better (Honda 2006)
- Neutrino cross-section Monte-Carlo improvements:
 - M_A=1.2 GeV/c²
 - Improved single pi resonant production model (added Δ→Nγ, lepton mass effects)
 - Improved of single pi coherent production model (Rein-Sehgal with lepton mass correction)
 - Improved DIS model (GRV98 pdfs with Bodek-Yang correction)
- Detector simulation improvements :
 - Better tuning of scattering & reflections
 - Improved OD tuning
- Higher Monte-Carlo statistics :
 - 500 yrs of SK-I & 500 yrs of SK-II MC generated
- Improved reconstruction :
 - Re-evaluate systematics of the experiment

Zenith angle analysis

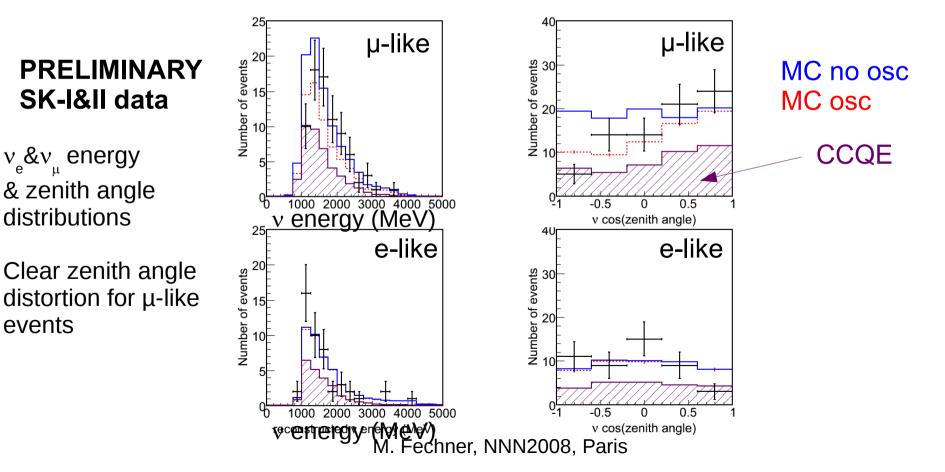



L/E analysis

- Select events with good L/E resolution (<70%)
 - Need good pointing accuracy & momentum fitting
 - High energy muons essential for this analysis
 → include partially-contained muons
- Compare (Data/MC no osc) to (MC / MC no osc)
- Oscillatory shape ("dip") allows to compare different hypotheses for observation :
 - Decoherence model disfavored at 5.0 σ compared to osc.
 - Neutrino decay model disfavored at 4.1 σ compared to osc


Allowed regions

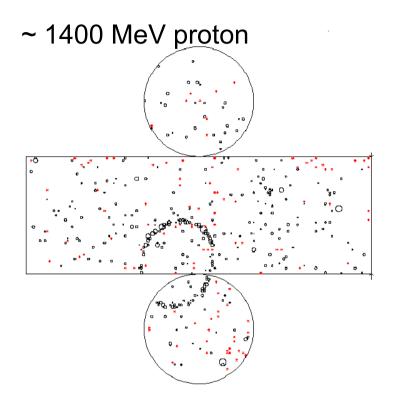
Current best measurement of θ_{23} : ~ 45±4° (10% accuracy)

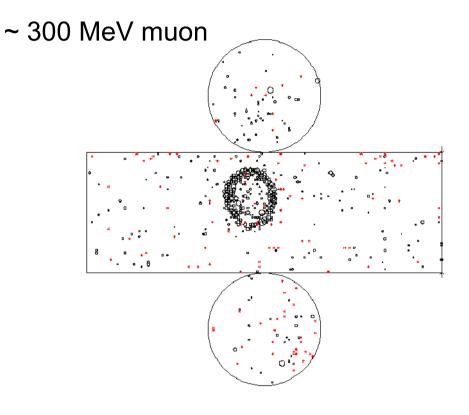

SK-III preliminary results

No oscillation analysis yet... but clear zenith angle distortion effects.

Observation of recoil protons

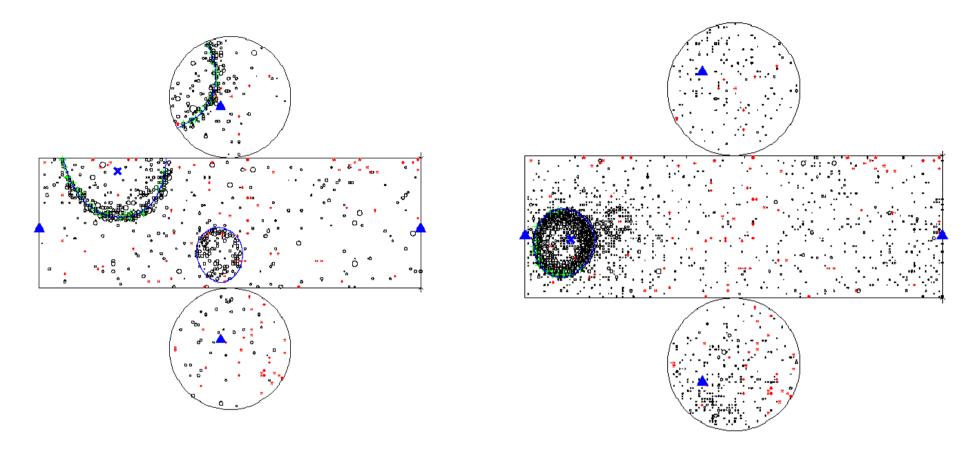
- Particle ID was extended to identify recoil protons from v scattering
- Cherenkov threshold in water ~ 1070 MeV/c for protons
- Two main analyses :
 - NC elastic events $v + p \rightarrow v + p$ [not covered today]
 - CCQE events $v + n \rightarrow$ lepton + proton
- Goals of recoil proton search in CCQE events :
 - Complete kinematic reconstruction of incoming <u>neutrino</u> energy & zenith angle Selection of a quasi-nure neutrino sample $v/\overline{v} \sim 9$
 - Selection of a quasi-pure neutrino sample


Summary


- SK-III has been running for 2 years as of today
 - SK-I+II+III data set : > 25,000 atm v events
 - Results are compatible with previous observations
 - Reduced background for solar analyses
 - Improved simulation & systematics for analyses
- SK-IV : starting in a few weeks
 - Complete replacement of ID & OD electronics
 - Ready for T2K beam
- Current physics :
 - 23% admixture of sterile neutrinos is allowed
 - θ_{23} measured to ~ 45±4° (10% accuracy)
 - Results on θ_{13} coming soon (current limit sin² θ_{13} < .14)
- Future physics goals :
 - See the upturn in solar neutrinos
 - Further constrain atmospheric models & parameters

Thank you

Backup slides


Proton vs muon

Proton ID relies on : smaller opening angle "thinness" of the ring different light density

CCQE search

CCQE events :

identified as 2 rings by standard ring finder identified as 1 ring but found by dedicated CCQE search algorithm