Status and Prospects of

Wisconsin

MINOS Far Detecto

Milwaukee

Fermilab

Chicago

Mich

MINOS

the NOvA Experiment

NOvA Far Detector

Minnesota

NOvA

Peter Shanahan Fermilab

For the Collaboration

lowa

NNN 2008 September 11, 2008 Paris

춯

APC, Argonne, Athens, Caltech, Fermilab, Harvard, Indiana, Lebedev Physical Institute, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, T U München, Northern Illinois, Ohio State

P.U.C. Rio de Janeiro, South Carolina, SMU, Stanford, SUNY Stony Brook, Texas-Austin, Texas-Dallas, Texas A&M, Tufts, UCLA, Virginia, William and Mary

P. Shanahan - Fermilab

Introduction

- •NOvA: NuMI Off-Axis ve Appearance
- Study $\nu_{\mu} \rightarrow \nu_{e}$:
 - search for $\sin^2(2\theta_{13})$ with a sensitivity an order of magnitude beyond current limits
 - sensitivity to Mass Hierarchy for a significant fraction of parameters
 - search for effect of CP violating phase δ
- Two detectors with a 810 km baseline using the NuMI Neutrino Beam from Fermilab
- Near and Far Detectors optimized for v_e chargedcurrent detection
- Located Off the Beam Axis

Off-Axis Spectra

- Benefits of off-axis spectrum:
 - More flux near oscillation maximum
 - Reduction of High Energy Tail reduces NC Feed-down
 - Concentration of ve from oscillation relative to intrinsic beam ve (from 3-body K and µ decay)

Location

- Optimization: Maximize sensitivity to Mass Hierarchy via Matter Effect
 - Maximize baseline within
 U.S. 810 km from Fermilab
 - Optimize off-axis location:
 12 km from beam axis
 - Ash River, MN

NuMI Beam

- Beam spectrum tuned with horn currents and relative horn-target placement
- 10 µs spill
- Operating since 2005

- Other NuMI Experiments
 - MINOS Alex Sousa's talk
 - MINERvA Proposed high precision neutrino scattering experiment
 - ArgoNeuT Mitch Soderberg's talk

Detector Requirements

- Large: 15 kT
- Required background suppression
 - ~50:1 for v_{μ} CC (easy!) ~100:1 for NC
 - Maximize Hadronic/EM
 Separation Internation Low Z, Fine
 Sampling per Radiation Length
- Energy Resolution
 - Small compared to width of signal peak
- ⇒ Liquid Scintillator in PVC Structure

Interaction spectra at 810km, 12km off-axis. Oscillations: $\Delta m^2=2.5 \times 10^{-3} \text{eV}^2$, $\sin^2(2\theta_{13})=0.01$

Scintillator and PVC

- PVC (polyvinyl chloride) extrusions with 15% TiO₂

- 32 cells per extrusion
- 12 extrusions per plane in

6 cm

3.87 cm

Far Detector

fiber - U shaped for high efficiency single-ended readout typical charged Scintillator: particle path

Basic unit:

Mineral Oil with 4.1% Pseudocumene

To 1 APD pixel

Plane of horizontal cells

Plane of vertical cells

Sampling

 $0.15 X_0$ per plane

Readout

• Wavelength shifting fibers into APDs

Far Detector

P. Shanahan - Fermilab

Near Detector

- Identical to Far Detector, except smaller, with muon catcher
- Placed and oriented at the same off-axis angle
- Contains 2 GeV ν events

18

Prototype

IPND: IntegrationPrototype Near Detector(84 tonnes)Test scale production of

Low Energy Beam To be located on surface near MINOS
Service Building
Data taking early 2010

- Test neutrino beam response, cross

calibration techniques, cosmic rejection

107 mrad off-axis:

dominated by K decays

NNN 2008

P. Shanahan - Fermilab

P. Shanahan - Fermilab

NC Rejection

E_v=8.4 GeV, y=0.27 Highly electromagnetic final state Hard to reject

P. Shanahan - Fermilab

3yrs each mode, 15 kT, 700 kW	Neutrino Running	Anti-neutrino Running	Efficiency*	* Efficiency
v _e CC signal	75.0	29.0	36%	fiducial cut
Backgrounds	14.4	7.6		Assumptions:
NC	6.0	3.6	0.23%	$\sin^2(2\theta_{13})=0.1$
ν _μ CC	0.05	0.48	0.004%	$\sin^2(2\theta_{23})=1.0$
Intrinsic Beam v _e	8.4	3.4	14%	$\delta = 0$ and no

Sensitivities

- Assumptions for the following plots:
 - 15 kT detector
 - 3 years running each for v and \overline{v}
 - > 3 beam power scenarios: 700 kW, 1.2 MW, and 2.3 MW
- Plots made using...
 - **Full simulation of flux, interactions, and detector response**
 - Event selection based on reconstruction

NOvA and Reactors

- Dominant term in $P(v_{\mu} \rightarrow v_{e})$ for long-baseline accelerator is proportional to $\sin^{2}(\theta_{23})\sin^{2}(2\theta_{13})$
- But $sin^2(2\theta_{23})$ is measured in long baseline ν_μ disappearance experiments

Difference is significant for $\theta_{23} \neq \pi/4$

• Fortunately, reactor experiments are sensitive to $\sin^2(2\theta_{13})$

• Comparison of LB appearance and Reactor results can allow resolution ambiguity: does v_3 couple more to v_{μ} ($\theta_{23} < \pi/4$) or to v_{τ} ($\theta_{23} > \pi/4$)?

2 sin²(θ_{23}) vs. sin²(2 θ_{23})

$\bigotimes Resolution of \theta_{23} ambiguity at 95\% CL$

P. Shanahan - Fermilab

Measurement of $\sin^2(2\theta_{23})$

 ν_{μ} Disappearance:

High Precision Measurement of $\Delta m^2 23$ and $\sin^2(2\theta_{23})$ will be possible with QE Channel, using NOvA's excellent energy resolution.

Sensitivity to $\sin^2(2\theta_{13}) \neq 0$

P. Shanahan - Fermilab

CP Violation and Mass Hierarchy

• CP violation and matter effect change sign between v and \overline{v}

• If the effects add, NOvA alone may be able to determine the Mass Hierarchy

 If they cancel, comparison with T2K may be able to break CP/Mass Hierarchy ambiguity

95% CL Resolution of Mass Hierarchy, NOvA Alone

P. Shanahan - Fermilab

Combining with T2K

N.B.: assumes T2K runs in neutrino mode only

Best possible δ for Normal MH

NOvA Only

P. Shanahan - Fermilab

History/Schedule

- May 2002: 1st Workshop
- April 2005: Fermilab PAC approval
- April 2006: DOE CD-1 recommendation "Approve Preliminary Baseline Range"
- November 2007: DOE CD-2 review Cost, schedule and scope baseline
 - complete *Technical Design Report*
- December 17, 2007: "Black Monday"
 - US Congress cuts much science funding, including FY2008 NOvA funding
- April 2008: CD-2 re-review, approval recommended
- July 1, 2008: M\$9.23 restored to NOvA FY08 funding project activities resume
- Expect CD-2 full approval soon
- Detector construction and running
 - IPND Data taking early 2010
 - Far Detector construction start late 2011, complete mid-2013. Data taking can start with first few kT

Conclusions

- NOvA will have greatly increased sensitivity to $v_{\mu} \rightarrow v_{e}$ over current experiments
 - Fine grained, low Z detector
 - Off beam axis location
- Unique sensitivity to the Mass Hierarchy
 - Matter effects: advantage of long baseline
- Complimentary to both T2K and Reactor Experiments
- NOvA is back on track!

δ at 1 σ

P. Shanahan - Fermilab

Sterile Neutrinos

Sensitivity to 11% sterile neutrino admixture at 90% CL

30

P. Shanahan - Fermilab

Supernova Sensitivity

NOvA would see burst of 5000 events for a supernova at the center of the galaxy