R&D of Large Aperture Hybrid Photodetector

H. Aihara, T. Abe, H. Fujimori, M. Iwasaki,

K. Kasimura, S. Mineo, T. Uchida (University of Tokyo) M. Tanaka (KEK) Y. Kawai, H. Kyushima, M. Suyama

(Hamamatsu Photonics)

NNN08 International Workshop on Next Nucleon decay and Neutrino detectors, Paris, 1-13 September 2008.

HPD features

- Large gain at the first electron multiplication
 →Good single photon energy resolution and detection
 efficiency
- No dynodes
 - \rightarrow Good time resolution
 - →Cost reduction and better quality control
- Low gain

→Need low-noise readout system

Major difficulties have been overcome.

- Large avalanche diodes.
- Activation of photocathode with AD inside.
- Sustaining HV (up to 20 KV)
- Low noise electronics
- Waveform sampling

Front- vs Back-illuminated AD

Front-illuminated AD

Back-illuminated AD

Back-illuminated AD has advantages

Back-illuminated AD (5mm-diameter)

EB-Gain: 4500 at -20kV AD-Gain: 50 at 390V No increase in dark current after 1000h operation at 4mA.

Front-illuminated AD shows gain drop and increase of dark current, even with the blocking electrode.

A sign of radiation damage.

HPD readout system

Front-end

Gain=1V/pC

Pulse shape at frontend ASIC

Rise time =5.8ns at Cd=40pF Input: HPD signal Intrinsic noise (ENC) ~3400 electrons at Cd=40pF

S/N(ideal)=100000/3400~30

Preamplifier (ASIC)

Analog Memory Cell operation

AMC characteristics

Sampling speed	1Gsps
Analog band width	>100MHz (~500MHz design)
Power	~70mW/ch
Dynamic range	~2V/0.7mV (11bit)
Sampling depth	512-1024
Integral non-linearity	0.1% over 2V range
Noise	<1mV
Pedestal variation	~2mV
Readout clock	30 MHz

Digital part (DSP+SiTCP)

- Real-time signal processing
- Digital signal processing (matched optimal filter in FPGA)
- High speed data transfer with SiTCP (~1Gbps on Ethernet)

Prototype of readout system

Energy distribution

Energy resolution 13inch HPD vs. 13inch PMT

15

Time resolution (TTS) (13inch HPD vs. 13inch PMT)

16

Timing resolution @ 1P.E.

17

Gain uniformity

for photons<5

P.E. collection efficiency

Simulation

HPD vs PMT

	13inch HPD	13inch PMT (R8055)	20inch PMT (for SK)
Single Photon Time Resolution	190ps	1400ps	2300ps
Single Photon Energy Resolution	24%	70%	150%
Quantum efficiency	20%	20%	20%
Collection efficiency	97%	70%	70%
Power consumption	<<700mW	~700mW	~700mW
Gain	10 ⁵	10 ⁷	10 ⁷

Digital HPD

Compact detector with Network + Power supply

HV supply

Size (~500 x 500x 100 mm)

Size (150 x 92 x 30 mm)

HPD's small power consumption allows a small HV supply.

Marketing Schedule (tentative/conservative)

- HPK plans to supply large aperture (13- and 8-inch) HPDs by spring 2012.
 - Option 1: HPD + preamplifier + HV system
 - Option 2: all of the above plus Digital board
- Price : careful optimization required.

End

Collection efficiency vs. magnetic field

