
NNN08

Neutrino factory with a non-magnetic detector

Thomas Schwetz

CERN

based on P. Huber and TS, arXiv:0805.2019

T. Schwetz, NNN08, Paris, Sept 2008 – p. 1



Outline

• Introduction:
Why NNN and Neutrino Factory do not
like each other

T. Schwetz, NNN08, Paris, Sept 2008 – p. 2



Outline

• Introduction:
Why NNN and Neutrino Factory do not
like each other

• I’ll try to convince you that this is not justified:
they should speak to each other...

T. Schwetz, NNN08, Paris, Sept 2008 – p. 2



Outline

• Introduction:
Why NNN and Neutrino Factory do not
like each other

• I’ll try to convince you that this is not justified:
they should speak to each other...

• What are the requirements that a non-magnetic
(but huge) detector can be useful also for a
Neutrino Factory beam
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The signal from a neutrino factory
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Need to distinguish wrong-sign from right-sign muon
events in the detector in order to separate

the appearance signal ν̄e → ν̄µ from
the disappearance signal νµ → νµ
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The common solution is...

use a magnetic field (∼ 1 T) to identify the charge of
the muon with an efficiency of . 10−4 ⇒

• “standard” NuFact: MIND (Magnetized Iron Neutrino Det.)

required length of muon track puts constraint on neutrino
energy threshold, energy resolution is poor, ∼ 50 kt

• “low-energy” NuFact: TASD (Totally Active Scintillator Det.)

lower energy neutrinos, good energy resolution, air core
magnet (superconducting LHC type magnet), ∼ 20 kt
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use a magnetic field (∼ 1 T) to identify the charge of
the muon with an efficiency of . 10−4 ⇒

• “standard” NuFact: MIND (Magnetized Iron Neutrino Det.)

required length of muon track puts constraint on neutrino
energy threshold, energy resolution is poor, ∼ 50 kt

• “low-energy” NuFact: TASD (Totally Active Scintillator Det.)

lower energy neutrinos, good energy resolution, air core
magnet (superconducting LHC type magnet), ∼ 20 kt

compared to the NNN scale these are relatively

“small” special purpose detectors
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Can we learn something by using a Neutrino Factory
beam on a Mt scale non-magnetized detector?
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Can we learn something by using a Neutrino Factory
beam on a Mt scale non-magnetized detector?

YES!

• oscillation itself helps to suppress the right-sign
muons

• there are other means to distinguish neutrino from
anti-neutrino events (at least statistically)
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Oscillation helps

Pµµ = 1 − sin2 2θ23 sin2 ∆ + O(∆m2

21, θ13)

Peµ ≈ 4s2

13s
2

23 sin2 ∆ + c2

23α̃
2

+2α̃s13 sin 2θ23 sin ∆ cos(∆ ∓ δ)

here ∆ ≡ ∆m2

31
L/(4E), α̃ ≡ sin 2θ12 ∆m2

21
L/(4E)

at the first oscillation maximum ∆ = π/2, Pµµ

(right-sign) goes to zero for sin2 2θ23 = 1, whereas Peµ

(wrong-sign) peaks
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Oscillation helps
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ν/ν̄ separation without magn. field

QE reactions

νx + N → l−x + p + N ′

ν̄x + N → l+x + n + N ′
Νx

lx
-

p

Θ

There are (at least) 3 differences between ν and ν̄
events:

• muon lifetime due to µ− capture
• cos θ distribution
• outgoing nucleon, either a proton or a neutron
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ν 6= ν̄ – muon lifetime

A µ− can be caught by the positively charged nuclei in the target
and will undergo muon capture.

Since this opens and additional channel for muon decay, the
resulting life time will be shorter than the one in vacuum.

Moreover, there will be no Michel electron.

Vacuum Carbon Oxygen Argon

lifetime µs 2.197 2.026 1.795 0.537

capture prob. - 8% 18% 76%

Has been used by MiniBooNE (neutrinos) and Kamiokande
(cosmic ray muons).

T. Schwetz, NNN08, Paris, Sept 2008 – p. 9



ν 6= ν̄ – cos θ

MiniBooNE, hep-ex/0602051

• ν̄ produce more
forward leptons

• effect largest around
1 GeV

has been used by MiniBooNE

T. Schwetz, NNN08, Paris, Sept 2008 – p. 10



ν 6= ν̄ – proton vs neutron

Identifying the outgoing nucleon requires the ability to
tag either the proton or the neutron, ideally both.

There are two sources of mis-ID:
• the tag is not 100% efficient
• the event produced the wrong nucleon because

• there were more than 1 nucleon
• the initial nucleon underwent a charge

exchange reaction

Initial estimates indicate, that efficiencies larger than
90% maybe possible and, that charge exchange
affects less than 15% of events.
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Nucleon tagging

Water Cerenkov

Proton tagging: Cerenkov threshold pp & 1.07 GeV
talk by M. Fechner: “neutrino sample” with ν/ν̄ ∼ 9
Neutron tagging possible by adding 0.2% Gadolinium.
The neutron will predominantly capture on Gd and
the Gd then will emit about 8 MeV of γs.
J. Beacom and M. Vagins, hep-ph/0309300

Liquid Argon

Has demonstrated its ability to see low energy
protons in a prototype.
F. Arneodo, et al., physics/0609205
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Sensitivity calculations
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Parametrization of statisticalν/ν̄ separation

In absence of dedicated MC studies we parametrize
ν/ν̄ separation by assuming that we sort each event
into either a ν̄-like sample N1 or a ν-like sample N2:

N i
1 =

1 − p

2
N i

ν +
1 + p

2
N i

ν̄

N i
2 =

1 + p

2
N i

ν +
1 − p

2
N i

ν̄

The efficiency is given by (1 + p)/2 and the
contamination with the other type by (1 − p)/2

p = 0: no separation at all, p = 1: perfect separation.
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The Neutrino Factory beam

• 5 GeV muons (low-energy Neutrino Factory)

• 1021 useful decays per year
• 5 years µ−

• 5 years µ+

• baseline 1290km

Note: this luminosity requires 4MW for 107s per year,
which is about the same than FNAL’s Project X which
would deliver 2.3MW for 1.7 · 107s a year.

T. Schwetz, NNN08, Paris, Sept 2008 – p. 15



Detector parameterization

TASD WC LAr
fiducial mass [kt] 20 500 100
efficiency 0.73 0.9a 0.8
magnetized yes no no
∆E at 2.5 GeV [MeV] 165 300b 165
p for muons 0.999 0 − 0.7 0.7 − 0.9

p for electrons 0 0 0.7 − 0.9

a on top of the single ring selection efficiency and an efficiency
of 82% for νµ events
b equivalent Gaußian width

T. Schwetz, NNN08, Paris, Sept 2008 – p. 16



CP sensitivity
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Size matters!
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Concluding remarks
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Summary

A large non-magnetized detector IS interesting also in
the context of a (low-energy) Neutrino Factory

• Oscillation provides a right sign muon suppression
of 1 : 10 down to 1 : 100, depending on energy
resolution

• Statistical ν/ν̄ separation:
muon lifetime, cos θ distribution, nucleon tagging

• separation efficiencies and purities of 50%-90%
allow to use NNN detectors for sin2 2θ13 & 0.004
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Summary

A large non-magnetized detector IS interesting also in
the context of a (low-energy) Neutrino Factory

• Oscillation provides a right sign muon suppression
of 1 : 10 down to 1 : 100, depending on energy
resolution

• Statistical ν/ν̄ separation:
muon lifetime, cos θ distribution, nucleon tagging

• separation efficiencies and purities of 50%-90%
allow to use NNN detectors for sin2 2θ13 & 0.004

All of this requires detailed simulations and a precise
understanding of nuclear effects, detector effects...!
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Final comment

Statistical ν/ν̄ separation is very useful also for
atmospheric neutrinos:
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Thank you for your attention!
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Backup Slides
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Non-maximalθ23
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Small θ13
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