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3 mixing angles

019 5in?2015 = 0.867007 (SNO, Kamland)

005 $in?2055 > 0.92 (Super-Kamiokande)

bhs ?  sin?260;53 < 0.19 [ ( CHOOZ, but soon Double-CHOOZ, T2K...)

3 masses (but experimentally only mass square differences)...

Am3, =m3 —m3=19t03.0x 1073V Am3, =m3 —m? =8.0103 x 107 %eV?
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S important gpen issue

...and 1 CP violating phase

5 —7 (Super-Beams, Beta-Beams, Neutrino Factory)

Can we learn about 6 with supernovae?
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With matter neutrinos interact in two ways:
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Possibility of resonance of neutrino oscillation in matter called Mikheev-
Smirnov-Wolfenstein (MSW) effect.

This effect explains the neutrino solar deficit problem.
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The neutrino evolution equation is
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Evolution operator in the
T,4 basis
This leads to the two following relations:

P(ve = 1,0 #0) = P(v, — 1,0 = 0)

The electron neutrino survival probability does not depend on 9.

Py, = ve,0 #0)+ Plvr = 1,0 #0) = P(v), = Ve, 0 =0) + P(vr — 1,0 = O)|

Valid for any density profile.



The neutrinosphere is where the neutrinos finally decouple from matter
and are emited.
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One has to take into account the neutrino-neutrino interactions:
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More complicated because non-linear problem.

New physics compared to the MSW effect
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CP-viclation efects and V-V interaction
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We showed analytically that :
Hp(5) = SHy(6 = 0)ST ‘—

v

P(ve = 1,0 #0) = P(v, — 1,0 = 0)

P, = ve,0 #0)+ P(vr = 16,0 #0) = P(v, = 16,0 =0) + P(v; = 1,0 = O)|

Still valid even with the v—v interactions.
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The electron neutrino flux in the supernova is

Gv.(0) = Ly P(ve — ve) + Ly, P(vy — ve) + Ly Pvr — ve)

In the standard model, at the tree level, at the neutrinosphere:

| L, =L,
V
Gv,(0) = Ly, P(Ve = Ve) + Ly, (P(vy — ve) + P(vr — ve)
# f(0) # f(0)

FT TREE LEVEL ¢Ve DOES NOT DEPEND ON 60 WITH v—v INTERACTION.
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1°)  Yes, in the Standard Model one has to take into account one loop
corrections for the neutrino interaction with matter.

2°) Beyond the Standard Model : Flavor Changing Neutral Currents, gtc...

|

Luu # Ly, atthe neutrinosphere

THERE CAN BE CP-VIOLATION
EFFECTS IN SUPERNOVAE.



e On probabilities and on the fluxes inside the supernova

e In a detector on Earth

e On nucleosynthesis (r-process)
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/@nchronised region >
v . . .
I |—— Standard MSW,
tree level
= — v-v interaction
< .
2 0.5} - included
E 0.5 /@W resonanE
\ @wﬁ#_—_: e st e Inverted hierarchy
- 1/ | , | | | n————_——
\ distance ( r/100 Km )

< Bipolar region >




"
CP-sistiation ofets on. P (Ve — Ve)

For various value of d.
- 1.02 : ,

1.02 T T I T I

=
(=}
|
=
(=}
[t

Probability ratio

0.99

Probability ratio

0.9

N

0.98 : : ' I ! I : 0.9 . ! | .
0 5 10 15 20 "5 {oe 07 o 0.9 1
distance (1/100 Km ) distance (r/100 Km )

<_Synchronised region > Bipolar region >

Inverted hierarchy and small ¢ 3

The probability depends on §! because of one-loop corrections. ‘




" JEE—
%@W@%@f&m ¢V€ indide the duperncea

1.1—

Standard MSW,
tree level

Tl < and 1'|00p

| L, #L.,

Flux ratio

| | | | A | | | | | | | A
09 ""10 20 30 40 50 60 70 \
Energy (MeV) o
Most realistic case !

EFFECTS OF 5% ON THE ELECTRON NEUTRINO FLUXES.
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Cionelusions

‘ AT THE TREE LEVEL IN THE STANDARD MODEL.:

® No effect of the CP-violating phase on (|)ve and on the nucleosynthesis,
with and without v—Vv interaction.

‘BEYOND THE TREE LEVEL AND/OR THE STANDARD MODEL:

® There are CP-violating effects because the v, and v_ fluxes
differ at the neutrinosphere.

® 5-10% effects on (v, and Pv, might be present in the supernova.

® A few percent effects on the number of events as a function of the energy
on Earth, less if the neutrino-neutrino interaction is included.
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Figure: Ye Ratio:
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Stroduction : what is wem-—aa/géwa;éwwm?

m Explosion at the end of the life of a massive star ( > 8 Ms) due to
the gravitational collapse of the iron core into a proto-neutron star.

m 99 % of the energy is released by neutrinos and anti-neutrinos of all
flavors (about 10% ergs for about 10 seconds).

- (D Anglo-Australian Observatory. -

SN1987A, before (on the left) Expanding remnants of SN1987A
and after (on the right) in the large Magellanic Cloud
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In two flavours the oscillation probability is:

P(ve — v,; t) = sin* 26, sin®

prob(ue—wp)
A

—_—

E—— sin® 26

| M)

osc mg %

There are two oscillation parameters 90 and Am~ = m5 — mJ



We chose the following density profile

7.5 x 107 -
r/lOKm)*gg' /

/OB:(

Which corresponds to tpp ~ 4 s
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We start from the Liouville-Von Neumann equation:

_

.dzl/a LVaSﬁVg((s)ST

! 1 = [T93T12HvacT1T2T103T + Hy + SH,,(6)ST, Z Ly, Spu, (6)ST]
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m Numerical simulations fail to explode: the shockwave stalls at 200
Km.

m Core-collapse supernovae are a possible site for the
nucleosynthesis of heavy-elements via the r-process.
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Neutrino-neutrino interactions



D ropagation of newtrings in matter with the

Finally we obtain : [ (5 ) — g1 U 09
|
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Vg — Uy when 5#0 Ve — Vy when 0 = ()
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P(vy — 1,0 #0) = ]AxyIQ P(vy — v,,0=0) = ]Bmylz
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3 masses (but experimentally only mass square differences)...
Am3, =m3 —m3 =1.9 to 3.0 x 107 3eV?
Am3, =m3 —mi =8.0105 x 107 °eV?
where the relation between them is:
Amiy + Amiy +Amg; =0 with [Ams, | < [Am3,| = [Am3,|

which imply two possible hierarchies...
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Figure 1. Normal mass hierarch; . :
& Y Figure 2. Inverted mass hierarchy



In 2 flavours:

d ( Ve ) B ( A47£ (0%2904—\/_01:
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In the matter basis

Ve \ [ cosO,,
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we obtain: Matter mixing angle

) ()

L
P(v. — v,; L) = sin® 20 sin” <7T—

L,
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This is the same formula as in vacuum but...

Matter basis
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...The amplitude and the oscillation length depend on matter density

2T 27

l’ln T T Y mml = 7 =
Am?2 2 Z12 220

sinZ 26 = ( 5 ) sin® 26,

(Ag cos 20y — \/§GF Ne)2 + (%—Tg): sinZ 20,

Am?
2F

There can be a resonance for V2Gr N, = cos 26,

This is the Mikheev-Smirnov-Wolfenstein (MSW) effect.
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Super-Kamiokande
S Catching Neutrinos

About once every 90 minutres, a neutrino interacts in the detector
chamber, generating Cherenkov radiation. This optical eguivalent of
a sonic boom creates a cone of light that is registered on the
photomultipliers that line the tank. Characteristic ring patterns tell
physicists what kind of neutrinos interacted and in which direction
they were headed.
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In 1998, people discovered that
neutrinos are oscillating!!!
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AS we can see
AP, = VP(V6 — Vo) — P(Ue — Vo) # 0
Is this true CP-violation? NO!

This is called « fake CP-violation » only due to matter asymmetry
with CP. We’re looking at the pure CP-violating phase 6
which is present only for a three flavour system.
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Solar neutrinos and leptonic CP violation.
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Supernova neutrinos: Difference of muon-neutrino - tau-neutrino
fluxes and conversion effects.

E. Akhmedov, C.Lunardini & A.Smirnoy,
Nucl.Phys.B643:339-366,2002.

How astrophysical neutrino sources could be used for early measurements
of neutrino mass hierarchy and leptonic CP phase?

Walter Winter, Phys.Rev.D74:033015,2006.
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Dominant reactions that control the proton to neutron ratio.

Ve+n=p+e

and | Ve +Fp=n-+e

We introduce the total proton loss rate

)‘p — )\5@ - )‘e—

The electron fraction is

and >\n — )\Ve + >\e+

Ye = <ne— — ne+)/<nn T n’P)
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Newwtrine cseillations in vaeaum

m Neutrinos have a mass!
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Flavour basis
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Mass basis

m /n vacuum, neutrinos evolve in the mass basis:

()=




The equilibrium value of the electron fraction is:

The capture rate on p and n are given by:

/\np — faz/erz Ve ( 1/)§b1/ Ve ( ) Ez/
7 X

/ \

Cross section of Fluxes which do not depend on 6
the previous reactions

Thus, the electron fraction Ye does not depend on 6.
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We take a Fermi-Dirac distribution for the initial luminosity:
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The average energy of the different neutrino species follow the hierarchy

(Ev.) < (Ep) < (Ey, 5,)




