

Characterising the T2K v beam: Status of the T2K Near Detectors

Outline

- T2K
- J-PARC and beamline
- Super-Kamiokande
- Near Detectors
 - INGRID
 - ND280

Laura Kormos Lancaster University

385 members, 65 Institutes, 12 countries

Canada TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto U. Victoria York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany

U. Aachen

Japan U Hiroshima ICRR **ICRR** Kamioka **ICRR RCCN** KEK Kvoto U. U. Kobe U. Miyagi U. Osaka City U. Tokyo Switzerland U. Bern U. Geneva

ETH Zurich

Poland **IPJ** Warsaw IFJ PAN, Cracow T U Warsaw USA U. Silesia, Katowice U Warsaw U Wroclaw S. Korea N. U. Chonnam U. Dongshin N. U. Gyeongsang N. U. Kyungpook U. Sejong N.U. Seoul U. Sungkyunkwa

Spain

IFIC, Valencia U. A. Barcelona

Boston U BNL Colorado S U Duke U. Louisiana S U Stony Brook U. U.C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington

Italy

INFN, U. Roma INFN, U. Napoli INFN, U. Padova INFN, Pol. of Bari

United Kingdom

Imperial C. London Oueen Mary U.L. Lancaster U Liverpool U. Oxford U. Sheffield U. Warwick U. STFC, RAL STFC, Daresbury

Russia

INR

The T2K Collaboration

The T2K Experiment

- Long baseline neutrino experiment
 - Baseline 295km
- Search for/measure neutrino oscillations:
 - $\, \nu_{\mu} \rightarrow \nu_{e}$
 - $\bullet \quad \mathcal{V}_{\mu} \rightarrow \mathcal{V}_{\tau}$
- Improve measurement of θ_{23} , Δm_{23}^2
 - Does θ₂₃ represent maximal mixing?
- First measurement of θ_{13}
 - How small is θ_{13} ?
- In phase 2, search for CP violation.

Near Detectors: ND280 (off-axis), INGRID (on-axis).

Main T2K Measurements: $\sin^2 2\theta_{23}$, Δm^2_{23}

- Phase 1:
 - ◆ 5 years X 0.75 MW beam
 - ✤ 5x10²¹ pot
 - Measurement of mixing angles

ν_{μ} disappearance

- Use CC Quasi Elastic Events
 - Can reconstruct neutrino energy.
 - Background from non-CCQE interactions.

Main T2K Measurements: $sin^2 2\theta_{13}$

The J-PARC Facility

181 MeV Linac

The neutrino beamline

Off axis-beam \Rightarrow narrow band, just the ν we want.

Super-Kamiokande

- Lots of experience detecting neutrinos.
- Recent results covered earlier in this session.

New electronics and DAQ system for the SK detector

Preparation of the new system is on schedule!

Preparations underway to improve for T2K.

- Upgrade of old electronics and DAQ to new system:
 - → Work underway.
 - → Full system commissioned this year, in time for T2K beam.

"Slíght not what's near, whíle aímíng at what's far."

-Eurípídes (~450 BC)

The T2K near detector suite.

- Understand the neutrino beam.
- On Axis Detector
 - Beam monitoring.
 - Beam direction.
- Off Axis Detector
 - Understand the neutrino beam to SK.
 - Beam flux.
 - Beam v_e contamination.
 - Background processes.
 - Cross sections.

On Axis – The INGRID Detector

- Modular Detector
 - 16 Modules.
- Each Module
 - IO Scintillator Bar Layers
 - 9 Iron Layers.
 - Surrounding Veto Planes
 - Wavelength Shifting Fibre
 - → Hamamatsu MPPCs.

INGRID Module Construction Underway

The Off-Axis Detector

Detailed understanding of beam to SK

POD: π° Detector Layers of lead/water and plastic scintillator. **3 TPCs: Time Projection Chambers** High-resolution tracking chambers with Micromegas readout. 2 FGDs: **Fine-Grained** Detectors High-granularity layers of water and plastic scintillator. ECal: Electromagnetic Calorimeter Layers of lead and plastic scintillator. SMRD: Side Muon **Range Detector** Slabs of plastic scintillator inside iron magnet yoke.

ND280 Magnet & Basket

Installation of the coils

Magnet moving system in the pit.

Delivery of the basket for testing.

Constructing the ND280: Tracking region

TPC inner box

& dummy

micromegas

TPCs and FGDs

- Measure the CCQE events
- ($v_e \& v_{\mu}$ flux, E-spectrum).
- Measure v cross-sections and kinematics.
- Measure nuclear recoil.

• PID.

TPC2

FGD2

TPC3

TPC inner wall

Constructing the ND280: POD, ECal, SMRD

POD

- Measure v_e -appearance backgrounds,
- especially π^{o} production rates, kinematics.
- Water-in vs water-out subtraction for cross-sections.

ECal

- Surrounds POD and trackers to capture EM energy.
- π^0 reconstruction and PID.

SMRD

Muon-ranging instrumentation in magnet yoke.

ECal scanner in operation.

1111

SMRD Bars

ND280 event

As ND280 is being physically integrated, it is also being virtually integrated!

Software team is working on matching subdetector information at boundaries.
A "Physics Book" is being created.

The reconstructed tracks overlay the MC "truth" tracks.

BACKGROUND SLIDES

J-PARC Milestones and Timeline

- The Accelerator Group at JPARC is meeting their milestones.
- Linac : Fully Commissioned
 - 181 MeV (day 1 beam energy) achieved Jan 2007
 - Good beam stability
- 3 GeV Synchrotron (RCS) : Fully Commissioned
 - 3 GeV acceleration and extraction Oct 2007
 - 4.4x10¹² particles per bunch
 - Aiming for 100 kW operation at 25 Hz
- Main Ring Synchrotron
 - Beam has been captured and circulated from RCS May 2008
 - Acceleration to 30 GeV after the summer.
 - Extraction to neutrino beamline Apr 2009