Double Chooz and RENO

Tobias Lachenmaier, Technische Universität München

International Workshop on

Next Nucleon Decay and Neutrino Detectors,

Paris 11-13 September 2008

M. Apollonio et al., Eur. Phys. J C27 (2003) 331:

Measuring θ_{13} with reactor neutrinos

- $\overline{\nu}_e$ disappearance experiment with a second, identical detector near to the source to measure the full flux and spectrum
- Uncertainties of reactor power, burnup effects, neutrino spectrum, cross section and detector efficiency (almost) cancel.
- Clean θ_{13} measurement, independent of δ -CP, independent of sgn(Δm_{31}^2)
- Complementary to neutrino beams, can break correlations and degeneracies

Double Chooz site

Chooz-B nuclear power plant

- in the Ardennes, France
- Electricité de France
- two PW reactors of type N4
- thermal power 8.5 GW_{th}

NEAR detector lab with 351 m/ 465 m to reactors, 115 m.w.e., access tunnel with 12% slope, available end of 2009

FAR detector lab with 1115 m/ 998 m to reactors, 300 m.w.e., old tank dismantled, lab updated, install. started 05/08

Detector layout

Calibration Glove-Box Outer Veto Plastic scintillator strips

10m³ Target: LS: 80% oil + 20% PXE + 1 g/l Gd + PPO + Bis-MSB in acrylic vessel

γ Catcher: LS: 80% oil + 20% PXE + PPO + Bis-MSB in acrylic vessel Non scintillating Buffer: non-scintillating mineral oil Buffer vessel with 390 10" PMTs: Stainless steel 3 mm

> Inner Muon Veto: Scintillator + 78 8" PMTs

Steel Shielding: 15 cm demagnetized steel

Zm

Signal and Background

Correlated Background Neutron slowing/thermalisation

Collaboration

June 2006: Double Chooz proposal: 119 authors from 26 institutions (hep-ex/0606025)

October 2007: TDR

June 2008

Far detector site status

Civil engineering work has been finished (detector pit refurbished, doors enlarged, new ventilation system, safety system).

Shielding steel bars have been mounted in the pit.

Installation in the Liquid Handling Building has started (6 large storage tanks from TUM)

Near detector lab

Site has been chosen with >45m overburden, almost flat topology.

Geological site study completed. Tender process for construction. Schedule: lab available end of 2009.

Inner detector components

Scintillators

Target solvent: 20% PXE – 80% Dodecane PPO / bis-MSB (γ spectroscopy, NAA) 1 g/I Gd loading: developed @MPIK 100 kg Gd(dpm)₃ compound delivered

New building at MPIK for production, storage and purification of scintillators

Buffer vessel and acrylics:

Design completed, suitable material has been chosen in discussion with manufacturer, now production.

Photodetection system

15% coverage with 390 10" PM tubes Energy resolution goal: 7% @ 1MeV PMT radiopurity: single rate < 5 Hz/detector PMTs have been shipped to Japan & Germany

for tests and assembly.

390 Hamamatsu R7081 10" PMTs per detector

µ metal shields

PMT mechanics

HVsplitters

Inner and Outer Muon Veto

Inner Veto

to tag efficiently cosmic ray muons and secondaries

LAB and tetradecane, 50 cm thickness 78 8" PMTs (encapsulated IMB tubes) Reflective walls (painted and foil)

PMTs, almost all parts ready for Chooz

Outer Veto

- Tag "near-miss" μ
- Redundancy for high rejection power

- Panels of strips
- Coextruded scintillator + TiO₂ reflector
- 1.2 mm Ø wavelength-shifting fibre

completed first prototype module

Detector Calibration

Sensitivity & schedule

Double Chooz Far integration Started in May 08

- 2008-09 → Far Detector construction & integration
- Mid-2009 → Start of phase I : Far 1 km detector alone sin²(2θ₁) < 0.06 after 1,5 year (90% C.L.) if no-oscil.
- 2008-10 → Near Lab Escavation & Near Detector Integration
- 2011 → Start of phase II : Both near and far detectors sin²(2θ₁₃) < 0.03 after 3 years (90% C.L.) if no-oscil.

Current Status of RENO

Slides/pictures by Soo-Bong Kim

Schematic Setup of RENO at YeongGwang

Summary of Construction Status

- 03~10, 2007 : Geological survey and tunnel design are completed.
- 07~12, 2008 : Tunnel construction
- Hamamatsu 10" PMTs are considered to be purchased. (expect to be delivered from March 2009)
- 09, 2008 : SK new electronics are adopted and electronic modules are delivered.
- 09, 2008 : A mock-up detector (~1/10 in volume) is assembled.
- 10~12, 2008 : Steel/acrylic containers and mechanical structure will be ordered soon.
- Liquid scintillator handling system will be prepared.

Tunnel Construction

Far detector site

Near detector site

Mockup Detector

Summary of RENO

□ RENO is suitable for measuring θ_{13} (sin²(2 θ_{13}) > 0.02)

□ Geological survey and design of access tunnels & detector cavities are completed \rightarrow Civil construction began in July, 2008.

□ RENO is under construction phase.

□ Data-taking is expected to start in early 2010.

□ International collaborators are being invited.

Conclusions & Outlook

Several experiments aim at being the first of a **new generation of reactor neutrino experiments** using identical detectors at different distances from a reactor **to measure** θ_{13} .

R&D phase is far advanced, we are in the construction phase, with detector installation started in Chooz in May 2008. Data taking with far detector is scheduled for mid-2009.

Era of precision measurements with reactor neutrinos will improve knowledge on θ_{13} , in a **complementary way to long baseline experiment**.

Reactor antineutrinos

Nuclear reactors are a strong, pure source of electron antineutrinos

 $\sim 2 \cdot 10^{20} \, \overline{\nu}_{e} \, (s \cdot GW_{th})^{-1}$

Antineutrino detection

Accidental & correlated background

Accidental coincidences between:

• e⁺-like signal (radioactivity from materials, PMT, surrounding rock) R_e

• **neutron signal** (induced by cosmic μ , γ 's mimicking neutron) R_n

 $\mathbf{R}_{\text{acc}}\text{=}\,\mathbf{R}_{\text{e}}\times\mathbf{R}_{\text{n}}\times\Delta t$

→ reduce gamma background
→ rate & shape of accidental
background can be measured *in situ* and subtracted from the spectrum

Fast neutrons (induced by cosmic μ) scatter on protons and are captured by Gd.

Long-lived isotopes (⁹Li, ⁸He) with β n-cascades (induced by cosmic μ).

Gamma background

Cosmogenic background: ⁹Li example

Start of construction

Reactor Experiment for Neutrino Oscillation

Korean/Russian collaboration 6 reactors with total 17.3 GW_{th} **Near Detector** target mass: 15 tons 100 m tunnel Goal: $\sin^2 2\theta_{13} \sim 0.02 @ 90\%$ CL in 3 years 70 m Hill 300 m tunnel 1.4 km 200 m Mt. **Far Detector** YongGwang reactor station

Larger Detectors

<u>Angra dos Reis, Brazil:</u>

- Goal: $\sin^2 2\theta_{13} \approx 0.006$
- very large target mass (~ 200t)
- 30 researchers from 11 institutions
- very near prototype detector approved by FINEP in March 2007

Triple Chooz:

- just an idea yet...
- larger cavity available in 2011
- 200t target (possible to observe spectral distortions)

A small hint for non-zero θ_{13}

		Chooz	Double-Chooz	
Total		2.7 %	< 0.6 %	
Reactor- induced	ν flux and σ	1.9 %	<0.1 %	two ''identical'' detectors, monitor flux with near det.
	Reactor power	0.7 %	<0.1 %	
	Energy per fission	0.6 %	<0.1 %	
Detector - induced	Solid angle	0.3 %	<0.1 %	distance measured @ 10 cm + monitor core barycenter
	Volume	0.3 %	0.2 %	same weight sensor for both det.
	Density	0.3 %	<0.1 %	accurate T control (near/far)
	H/C ratio & Gd concentration	1.2 %	<0.1 %	same scintillator + stability of scintillator
	Spatial effects	1.0 %	<0.1 %	''identical'' target geometry & LS
	Live time	few %	0.25 %	measured with several methods
Analysis	From 7 to 2-3 cuts	1.5 %	0.2 - 0.3 %	Low backgr., reduction of accidentals

The detector(s)

