J-PARC Neutrino Beam

- 1. J-PARC Accelerator/ Neutrino Beamline construction status and commissioning plan
- 2. T2K as a first experiment utilizes J-PARC Neutrino Beam (already covered by Dr. Laura Kormos yesterday)
- 3. Accelerator upgrade plan (KEK Roadmap)
- 4. Possible Future Discovery Experiment with J-PARC Neutrino Beam
- 5. Summary-Accelerator Based Neutrino Project in Japan-

Takuya Hasegawa (KEK)

J-PARC Accelerator and Experimental Facility

Three dispersion free straight sections of 116-m long:

- Injection and collimator systems
- Fast extraction (beam is extracted inside/outside of the ring) and RF cavities inside: Neutrino Beamline (intense v beam to SK located 295 km west) outside: Beam abort line (at any energies when hardware failure occurs)
- Slow extraction

to Slow extraction Experimental Hall (K Rare decay, hyper nucleus..)

MR Commissioning Brief History

• 19-May:

MR Commissioning with beam started

• 20-May:

3GeV closed orbit is established

• 22-May:

RF capture is established

(RF capture, 1000 turns with controlled beam dump)

• 23-May:

 \sim 1 hour operation with 3.64 sec cycle time 3GeV (RF capture), 4×10^{11} protons/bunch, single bunch controlled abort after 1 sec

• 24-May:

First round commissioning finished

• 14~21-June:

Second round beam commissioning

various optics measurement/tuning has been done

Snap Shot: First RF Capture

Synchrotron Oscillation Pattern

Beam Intensity as a Function of Time

LINAC/RCS as an Injector Achievement Up to Now

- RCS 52.5kw equiv. operation for 4.5minutes (Limited by the authorized capacity of beam dump)
 - RCS operation mode:
 - 4.4×10^{12} protons per bunch, single bunch, 25Hz
 - LINAC operation mode: peak current 25mA, pulse width120µsec, bunch length 560ns
- RCS 130kw equiv. operation for one pulse
 - RCS operation mode: $\sim 10\%$ of 1MW nominal intensity 1.07×10^{13} protons per pulse, two bunches per pulse
 - LINAC operation mode: peak current 25mA, pulse width 120µsec, bunch length 700ns

*Now intense study on painting injection(to avoid severe space charge effect) is underway

MR Schedule

• Intermission: July08-Nov08

- Install rest of the fast extraction devices
- Install slow extraction devices
- Various tuning/preparation for acceleration/extraction
- Beam Commissioning: Dec08-Feb09
 - Fast extraction system (for beam dump)
 - Acceleration to 30GeV
 - Slow extraction
- Intermission: March09
 - Integrate neutrino beam facility to other radiation restricted area
- Beam Commissioning: Apr09-
 - Neutrino beam facility commissioning with beam

*Doing best to provide $100 \text{kw} \times 10^7 \text{sec}$ proton power on target by summer 2010

The J-PARC Neutrino Beamline

Concept of J-PARC Neutrino Beamline

- Preparation section: matching beam optics to arc section
- Arc section: bending the beam $\sim 90^{\circ}$ to SK with superconducting combined function magnet
- Final focus section: matching beam optics to target (position and profile, level of mm control is necessary which correspond to 1mrad v direction, also not to destroy target)
- Graphite Target and Horn Magnet: produce intense secondary π and focus them to SK (3horn system with 320kA pulse operation)
- Muon Monitor: monitor μ direction (=v direction) pulse to pulse with measuring center of muon profile
- On Axis Neutrino Monitor(INGRID): monitor v direction and intensity

*Tolerable up to \sim 2MW beam power

Limited by temperature rise and thermal shock

(Al Horn, Graphite Target, Ti Vacuum Window)

*Everywhere high radiation

Careful treatment of radioactive water and air (~ 10 GBq/3week) is necessary Maintenance scenario of radio active beamline components is necessary

Status of the Neutrino Beamline

- Construction is on schedule
 - Primary beamline will be completed by Nov.
 - Commissioning w/o beam from Dec.-
 - Secondary beamline will be completed by Feb.
 - INGRID (Neutrino Direction/Intensity Monitor) will be installed in Feb.-Mar.
- Commissioning with Beam from April 1, 2009

T2K is aiming for the first results in 2010 with 100kw × 10⁷sec integrated proton power on target to unveil below CHOOZ limit with v_e appearance

Primary Motivation of T2K

Discover $v_{\mu} \rightarrow v_{e}$ conversion phenomenon prior to any other experiment in the world

Conclude Lepton Flavor Mixing Structure

T2K Proposal Accepted by J-PARC PAC

"We request total integrated beam power larger than $0.75MW \times 15000h$ at any proton energies between 30 and 50 GeV."

 $15000 h = 5 \times 3000h$ $= 5 \times 10^{7} sec$

T2K Discovery Potential on $v_{\mu} \rightarrow v_{e}$ as a Function of Integrated Power

Integrated power of $1 \sim 2MW \times 10^7$ seconds is a turning point to decide

Next Project utilizing J-PARC Neutrino Beam

Future Investment for the "Discovery" in v Physics

If **Significant** v_e Signal \rightarrow Proceed Immediately to CP Violation Discovery

MUST: Improve v Beam Intensity MUST: Improve the Main(Far) Detector Quality In terms of Detector Technology, Volume and Baseline+Angle Naturally, main neutrino detector tends to be huge.

As a consequence, main neutrino detector gives us rare and important opportunity to Discover Proton Decay

Quest for the Origin of Matter Dominated Universe

- Lepton Sector CP Violation
 - Search for CP violation in Neutrino Oscillation Process
 - Also examine mass hierarchy of neutrinos
 - Also examine matter effect in neutrino oscillation process
- Proton Decay
 - $\begin{array}{ll} & p \rightarrow \nu \ K \\ & p \rightarrow e \ \pi^0 \end{array}$

*Non-equilibrium environment in the evolution of universe is assumed

J-PARC to Somewhere Long Baseline Neutrino Experiment and Nucleon Decay Experiment with Huge Volume Detector

Possible Timeline

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
	4	4	4	4	4	4	4	4	4	4
Linac(400MeV)		?			?	→ 400M	eV			
T2K										
MR Intensity Upgra	ade				?		?		.66MW	
Detector R&D										
-										

Presented by KEK DG at KEK Roadmap Review Committee 9,10-March 2008

Future Investment for the "Discovery" in v Physics

If **Significant** v_e Signal \rightarrow

Proceed Immediately to CP Violation Discovery

MUST: Improve v Beam Intensity

MUST: Improve the Main(Far) Detector Quality In terms of <u>Detector Technology, Volume</u> and <u>Baseline+Angle</u>

Possible MR Power Improvement Scenario KEK Roadmap

	Day1 (up to Jul.2010)	Next Step	KEK Roadmap	Ultimate
Power(MW)	0.1	0.45	1.66	?
Energy(GeV)	30	30	30	
Rep Cycle(sec)	3.5	3-2	1.92	
No. of Bunch	6	8	8	
Particle/Bunch	1.2×10^{13}	<4.1×10 ¹³	8.3×10^{13}	
Particle/Ring	7.2×10^{13}	<3.3×10 ¹⁴	6.7×10^{14}	
LINAC(MeV)	181	181	400	
RCS	h=2	h=2 or 1	h=1	

After 2010, plan depends on financial situation

Item to be Modified from DAY1 toward High Intensity

- No. of Bunch in MR($6 \rightarrow 8$)
 - Fast Rise Time Extraction Kicker Magnet
- Increase Repetition Rate $(3.5Sec \rightarrow 1.92Sec)$
 - RF and Magnet Power Supply Improvement
- RCS h=1 Operation (longer beam bunch to decrease space charge effect)
 - RF Improvement
 h=2: 2 bunches × 4cycle injection to MR
 h=1:Single bunch with doubled no. of proton × 8cycle injection
- LINAC 400MeV Operation (avoid severe space charge effect at RCS injection)

Future Investment for the "Discovery" in v Physics

If **Significant** v_e Signal \rightarrow Proceed Immediately to CP Violation Discovery

MUST: Improve v Beam Intensity MUST: Improve the Main(Far) Detector Quality In terms of Detector Technology, Volume and Baseline+Angle

Depend on how to approach Lepton Sector CP Violation

Lepton Sector CP Violation

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & c_{13}s_{12} & e^{-i\delta}s_{13} \\ -s_{12}c_{23} - e^{-i\delta}c_{12}s_{13}s_{23} & c_{12}c_{23} - e^{i\delta}s_{12}s_{13}s_{23} & c_{13}s_{23} \\ -e^{i\delta}c_{12}s_{13}c_{23} + s_{12}s_{23} & -e^{i\delta}s_{12}s_{13}c_{23} - c_{12}s_{23} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Effect of CP Phase δ appear as

- v_e Appearance Energy Spectrum Shape
 *Peak position and height for 1st, 2nd maximum and minimum
 *Sensitive to all the non-vanishing δ including 180°
- Difference between v_e and \overline{v}_e Behavior

Angle and Baseline

Angle w.r.t On-Axis

 On-Axis: Wide Energy Coverage,
 Energy Spectrum Measurement
 Control of π⁰ Background
 Off-Axis: Narrow Energy Coverage,
 Control of π⁰ Background
 × Energy Spectrum Measurement

 \rightarrow Counting Experiment

- Baseline
 - Long:
 - \bigcirc 2nd Osc. Max. at Measurable Energy
 - \times Less Statistics
 - ? Large Matter Effect
 - Short:
 - \bigcirc High Statistics
 - $\times 2^{nd}$ Osc.Max.Too Low Energy to Measure
 - ? Less Matter Effect

Three Possible Scenario Studied at NP08 Workshop

Артем

Scenario 3

- Cover 2nd Maximum @ Korea
 Cover 1st Maximum @ Kamioka
- •5Years v+5Years v Run 1.66MW
- •270kt Water Cherenkov Detector each

Spectrum at Kamioka

Spectrum at Korea 1.0° OA

Sin²(2 $\theta_{_{13}}$)=0.04, neutrino, normal hierarchy, Scenario B F.Dufour@NP08

(study is initiated by M.Ishitsuka et. al. hep-ph/0504026)

Comparison of Each Scenario

	Scenario 1 Okinoshima	Scenario 2 Kamioka	Scenario 3 Kamioka Korea
Baseline(km)	660	295	295 & 1000
Off-Axis Angle($^{\circ}$)	0.8(almost on-axis)	2.5	2.5 1
Method	v _e Spectrum Shape	Ratio between $v_e \overline{v}_e$	Ratio between 1st 2ndMax
Beam	5Years $v_{\mu,}$ then Decide Next	2.2 Years $v_{\mu,}$ 7.8 Years $\overline{v}_{\mu,}$	5 Years $v_{\mu,}$ 5 Years $\overline{v}_{\mu,}$
Detector Tech.	Liq. Ar TPC	Water Cherenkov	Water Cherenkov
Detector Mass (kt)	100	2×270	270+270

Study is continuing to seek for optimum choice

Additional Requirement for Far Detector Optimization

• Proton Decay Discovery Performance

- Realization of the Huge Detector
 - Test of the key components
 - Experimentally prove the detector performance
 - If small scale prototype is necessary, this prototype should be the good indicator for Huge Detector Performance (size, key component)
 - Test with the beam is important

*KEK started R&D for Huge Liq. Ar TPC

Accelerator Based Neutrino Project in Japan

	K2K	T2K	3 rd Generation Exp. (KEK Roadmap)
High Power Proton Synchrotron	KEK PS 12GeV 0.005MW Existing	J-PARC MR 30GeV up to 0.75MW Brand New	J-PARC MR 30GeV 1.66MW Technically Feasible Upgrade
Neutrino Beamline	K2K Neutrino Beamline Brand New	J-PARC Neutrino Beamline Brand New	J-PARC Neutrino Beamline Existing
Far Detector	Super Kamiokande Existing at KAMIOKA	Super Kamiokande Existing at KAMIOKA	Brand New -Detector Technology ? -Place ? (Angle and BaseLine)
1 st Priority Physics Case	Neutrino Oscillation v_{μ} Disappearance	Neutrino Oscillation $\nu_{\mu} \rightarrow \nu_{e}$	Lepton Sector CP Violation + Proton Decay Search

Able to concentrate on Far Detector issue toward the 3rd Generation Experiment after T2K startup

Summary Accelerator Based Neutrino Project in Japan

Short Term

- Beam commissioning of J-PARC MR has started May-2008
- Construction of J-PARC Neutrino Beamline is on time Commissioning will start in April-2009
- T2K is aiming for the first results in 2010 with 100kw × 10⁷sec integrated proton power on target to unveil below CHOOZ limit with v_e appearance

Mid Term

- T2K data with 1-2MW × 10⁷sec integrated proton power on target will provide critical information on θ_{13} , which guides the future direction of the neutrino physics
- KEK Roadmap MR power improvement plan for 1.66MW
- Submit proposal

"J-PARC to Somewhere Long Baseline Neutrino Experiment and

Nucleon Decay Experiment with Huge Detector"

and construct Huge Detector

Long Term

• Discovery of CP violation in Lepton Sector (also Proton Decay)