India-based Neutrino Observatory (INO)

Status Report

D. Indumathi

The Institute of Mathematical Sciences, Chennai (indu@imsc.res.in) For the INO Collaboration (http://www.imsc.res.in/~ino)

Outline of talk

The context

Outline of talk

The context

- The India-based Neutrino Observatory
 - The ICAL Detector: RPC's and magnet design
 - Physics possibilities at ICAL: atmospheric and long-baseline physics
 - Location

Outline of talk

The context

- The India-based Neutrino Observatory
 - The ICAL Detector: RPC's and magnet design
 - Physics possibilities at ICAL: atmospheric and long-baseline physics
 - Location
- Current Status of INO

India-based Neutrino

Observatory

The INO Collaboration

- Aims to build an underground laboratory for science with neutrino physics as a major activity
- Spokesperson: N. K. Mondal, TIFR
- Collaborating Institutions: AMU, BHU, BARC,CU, DU, HRI, UoH, HPU, IITB, IITKh, IGCAR, IMSc, IOP, LU, NBU, PU, PRL, SINP, SMIT, TIFR, VECC

The INO Collaboration

- Aims to build an underground laboratory for science with neutrino physics as a major activity
- Spokesperson: N. K. Mondal, TIFR
- Collaborating Institutions: AMU, BHU, BARC,CU, DU, HRI, UoH, HPU, IITB, IITKh, IGCAR, IMSc, IOP, LU, NBU, PU, PRL, SINP, SMIT, TIFR, VECC
- Stage I : Study of atmospheric neutrinos
 - Physics Studies (atmospheric neutrinos); Detector R & D; construction of a prototype (in progress); HRD
 - Site choice and clearances; lab and detector construction

The INO Collaboration

- Aims to build an underground laboratory for science with neutrino physics as a major activity
- Spokesperson: N. K. Mondal, TIFR
- Collaborating Institutions: AMU, BHU, BARC,CU, DU, HRI, UoH, HPU, IITB, IITKh, IGCAR, IMSc, IOP, LU, NBU, PU, PRL, SINP, SMIT, TIFR, VECC
- Stage I : Study of atmospheric neutrinos
 - Physics Studies (atmospheric neutrinos); Detector R & D; construction of a prototype (in progress); HRD
 - Site choice and clearances; lab and detector construction
- Stage II : Study of long-baseline neutrinos, from a neutrino factory/beta beam
- Other detectors/physics like neutrinoless double beta decay? NVNO8, Sep 12, 2008 - p. 6

The choice of detector

- Large target mass: began with 30 kton; current design 50 kton
- Good tracking and energy resolution
- Nano-second time resolution for up/down discrimination; hence good directionality
- Good charge resolution; magnetic field
- Ease of construction (modular)

Use (magnetised) iron as target mass and RPC as active detector element. Similar to MONOLITH.

Note: Is sensitive to muons only, not electrons

The ICAL detector

- \checkmark 50 kton iron, magnetised to ~ 1.2 T with 140 layers of 6 cm plates in three modules
- Each module = $16 \times 16 \times 12m^3$

The active detector elements: RPC

RPC Construction: Float glass, graphite, and spacers

Fabricating RPC's

Specifications of the ICAL detector

ICAL				
No. of modules Module dimension Detector dimension No. of layers Iron plate thickness Gap for RPC trays	3 16 m \times 16 m \times 12 m 48 m \times 16 m \times 12 m 140 \sim 6 cm 2.5 cm			
Magnetic field	1.3 Iesla			
RPC				
RPC unit dimension Readout strip width No. of RPC units/Road/Layer No. of Roads/Layer/Module	2 m × 2 m 3 cm 8 8			
No. of RPC units/Layer Total no. of RPC units No. of electronic readout channels	192 \sim 27000 3.6 \times 10 ⁶			

Physics Studies and Simulations

- Source: Atmospheric Neutrinos, 6 years' exposure, from Nuance neutrino generator.
- ICAL simulation with GEANT-3, $B_y = 1$ T.

Shown are 90 and 99 CL contours in comparison with Super-K and MINOS results. Caution: MINOS ≡ 3-flavour analysis, Schwetz et. al. hep-ph/0808.2016

Physics Studies with ICAL

All experiments with 5 years' running; NOVA 25kton, 6 years $(6 \times 10^{21} \text{ pot})$. *Adapted from:* P. Huber, M. Lindner, M. Rolinec, T. Schwetz and

W. Winter, hep-ph/0412133.

Matter effects with atmospheric neutrinos

Solution Matter effects involve the participation of all three (active) flavours; hence involves both $\sin \theta_{13}$ and the CP phase δ .

Hence sensitive to the mass ordering of the 2–3 states, provided $\theta_{13} > 6^\circ$; however, needs large exposures

The difference asymmetry

D: Direct/normal; I: Inverted hierarchy

Sign of $\delta \equiv \Delta m_{32}^2$ for $\theta_{13} = 5, 7, 9, 11^\circ$

Hence sensitive to the mass ordering (red vs blue) of the 2–3 states With exposures of 500 kton-years, can get a 90%CL result if $\sin^2 2\theta_{13} > 0.09$ (10% R) $\sin^2 2\theta_{13} > 0.07$ (5% R) However, needs large exposures of about 800 kton-years for smaller $\sin^2 2\theta_{13} > 0.07$ (10% R) $\sin^2 2\theta_{13} > 0.05$ (5% R)

Other physics possibilities

... with atmospheric neutrinos

- Solution Discrimination of octant of θ_{23} provided $\theta_{13} > 7^{\circ}$ (sin² 2 $\theta_{13} > 0.06$); harder than mass ordering
- ✓ Probing CPT violation from rates of neutrino- to rates of anti-neutrino events in the detector: sensitive to δb , which adds to $\Delta m_{32}^2/(2E)$ in oscillation probability expression.
- Solution Constraining long-range leptonic forces by introducing a matter-dependent term in the oscillation probability even in the absence of U_{e3} , so that neutrinos and anti-neutrinos oscillate differently.
- Discrimination between oscillation of ν_{μ} to active ν_{τ} and sterile ν_s from up/down ratio in "muon-less" events?

Stage II: Neutrino factories and INO

 θ_{13} reach and sign of Δm^2_{32} vs wrong sign μ

Can also study CP violation: note, JHF–PUSHEP (6556 km) and CERN–PUSHEP (7145 km) are close to magic.

NNN08, Sep 12, 2008 – p. 17

Location of INO

More on the site

 2.1 km long access tunnel into mountain; cavern beneath the peak

• Experimental hall I: $25m \times 130m \times 30m$ (height) built to accommodate 50 kton + 50 kton modules (future expansion)

• Experimental Hall II: about half the size, to accommodate other, smaller experiment(s).

Current Status of

INO

Prototype Studies at VECC/TIFR

Magnet Weight~ 40 tons; 2.5 m × 2.3 m 13 layers of 5 cm soft iron; 12 layers of $1 \times 1m^2$ RPCs $NI_{max} = 10,000$ A.turns $B_{max} = 1.5$ T (expected) 800 channels of preamp, timing discriminators for avalanche RPCs

RPC Efficiency Studies

RPCs now operated in avalanche mode R134a:95.5%; rest isobutane, at 9.3 KV

Round-the-clock monitoring of 2 RPCs for two years now temperature, relative humidity, pressure.

Efficiency stable; chamber currents, noise rates, stable.

Testing bakelite RPCs at VECC and BARC

Hardware issues

- Mechanical design and assembly project report being pepared by Tata Consulting Engineers (TCE), Mumbai
- In-house electronics development for prototype for both front and back-ends.

32 ch digital front end

Control & data router

Trigger & TDC router

Final trigger

Data & monitor control & readout

Environment and Forest Clearances

- Main issue: INO is located in Manipulation Zone of Nilgiri biosphere reserve.
- No clearance or occupation of forest. (Access and buildings completely within TNEB power house campus). However,
 - disruption in nearby elephant corridor;
 - disposal of stone excavated;
 - employment opportunities for locals.
- Rapid-EIA by SACON; detailed EMP by Care-Earth: recommendations on each of these issues
- Meetings with local bodies (panchayats), wildlife scientists, activists. One/two more interaction meetings planned.

Other Updates

- Simulations for ICAL detector: comparison of GEANT3 and GEANT4; differences in hadrons, yet to be fully understood
- A DPR for a planned DBD experiment; bolometric ¹²⁴Sn prototype of 0.5 to 1 kg
- INO Graduate School, began in August this year
- Lectures at HRI/TIFR; Faculty from all over India
- A new centre at Mysore will take charge of the INO related activities

Costs/Schedules

	Rs (crores)		
	11th plan	12th plan	
Infrastructure (labs, services,)	100		_
Soft iron 50 kton	100	200	
Detector (RPC, electronics, DAQ)	75	130	•
Misc. inclusive. salaries	45	20	
Mysore Centre	50		
DST 100	100		
TOTAL	470+	450	_
t = 0 < 6 months?	920 =	230 M\$	

 $t = 0 \le$ 6 months?

- 12–18 months: planning, permissions, engg design
- 22 months: excavation, detector fabrication
- 12–18 months assembly of 1–2 modules

Approval Status

- DAE has given an "in-principle" approval for the project.
- The request for funding project is jointly submitted to DAE-DST.
- The requested funding for the current plan period ending March 2012 has been allocated by the Indian Planning Commission.
- Detailed Project Report with year-wise funding request is required for sanction of money, including for construction.
- DPR is in the approval chain. Expected to take a few more months.

Thank You

Additional Slides

3σ Precision of parameters

at $\Delta m_{32}^2 = 2.0 \times 10^{-3} \text{ eV}^2$ and $\sin^2 \theta_{23} = 0.5$

Experiment	$P(\Delta m^2_{32})$	$P(\sin^2 heta_{23})$	hierarchy
Current	88%	79%	_
MINOS	17%	65%	_
CNGS	37%	-	_
NO $ u$ A ($6 imes 10^{21}$ pot)	\sim 5%	\sim 9%	in comb
T2K (Super-K, 0.75 MW)	12%	46%	
ICAL (50 kton)	20%	60%	$\sin^2 2\theta_{13} > 0.06$

$δ_{\delta}$ Disappearance Measurement

• NO δA can still do δ_{δ} disappearance measurement, measure the mixing angle δ_{23} and δm^2_{23} .

Measure sin²2 δ_{23} to 0.5-1%

aius Howcroft

Measurement unique to NO δA

aius Howcroft

NNN08, Sep 12, 2008 - p. 31

Other issues w.r.t RPC R & D

- RPC timing
- RPC charge distribution
- Mean charge vs voltage (seen to be linear)
- RPC noise
- Solution ($C_2H_2F_4$ (R-134a), Argon, Isobutane (\leq 8%))
- RPC Cross talk (as a function of gas mixture)
- Gas mixing