Proton Decay Search in Super-Kamiokande I and II

H. Nishino (ICRR, University of Tokyo) for the Super-Kamiokande Collaboration

September 11th, 2008 @NNN08

The Super-Kamiokande Experiment

 Super-Kamiokande is a 50kton water Cherenkov detector located in Kamioka mine, Japan

- SK-III has just ended for electronics replacement.
- Topics except for nucleon decay searches will be covered by M.Fechner.
- SK-I+II combined exposure: 141kton year
- The largest exposure as a proton decay search experiment.

Nucleon Decay Searches in Super-K

- Nucleon decay can be a direct evidence for Grand Unified Theories.
- Recent status of nucleon decay searches in Super-K
 - $\rho \rightarrow e^+(\mu^+)\pi^0$:Favored in many GUT models
 - Updated Result
 - $p \rightarrow vK^+$: Favored in SUSY GUT
 - Not updated
 - $\tau/B > 2.3 \times 10^{33}$ (SK-I, Phys.Rev.D72 (2005) 052007)
 - $-n \rightarrow \overline{\nu} \pi^0$: predicted by minimal SUSY SO(10) model with B-L violation
 - New Search Result
 - $-n-\overline{n}$ oscillation: Not nucleon decay, but good test for GUT
 - Updated Result

Analysis Updates

Improved event reconstruction algorithms

- ring counting
- momentum determination (charge separation) for multiring events
 - PMT density is taken into account
 - better performance for total mass and momentum reconstruction, especially in SK-II
- Atmospheric neutrino background MC
 - Increased atmospheric neutrino MC statistics
 - 100yr \rightarrow 500yr equivalent for both SK-I and SK-II
 - →less statistical error for BG rate estimation
 - flux model: Honda06
 - Updated neutrino interaction model (NEUT)

$p \rightarrow e^+ \pi^0 \& p \rightarrow \mu^+ \pi^0$ mode search

$p \rightarrow e^+ \pi^0$ mode search

Event Selection Criteria

- 1. fully contained, fiducial volume
- 2. 2 or 3 Cherenkov rings
- 3. all *e*-like rings
- **4.** 85<M_π(MeV/c²)<185 (for 3ring)
- 5. no decay-e
- 6. 800 < Mtot (MeV/ c^2) < 1050
- & Ptot (MeV/c) < 250
- very clear signal
- simple selection criteria
- Efficiency for unbounded protons: 87%

Good performance!

Proton Decay Search Performance SK-I vs. SK-II

Detection Efficiencies for $p \rightarrow e^+ \pi^0$

Detection efficiency of SK-II is also comparable to SK-I.
Systematic uncertainty mostly comes from uncertainty of pion nuclear effect.

Contribution to BG

CCQE	21%
CC single pi	38%
CC multi pi	20%
other CC	7%
NC	14%

- dominant contribution to BG:
 - CC single pi production
- systematic uncertainties of BG rate: 36.5%
 - cross sections (neutrino, hadron propagation): 29.0%
 - event reconstructions: 20.6%
 - neutrino flux: 8.2%

BG rate estimations

Ptot vs Mtot for $\mu^+\pi^0$ events from the K2K KT data (PRD77, 032003 (2008))

Our BG estimation is consistent with the other estimations.

$p \rightarrow \mu^+ \pi^0$ mode search

Event Selection Criteria

1. fully contained, fiducial volume 2. 2 or 3 Cherenkov rings 3. (2 or 1) *e*-like rings, 1-mu-like 4. $85 < M_{\pi} (MeV/c^2) < 185 (for 3ring)$ 5. 1 decay-e 6. $800 < Mtot (MeV/c^2) < 1050$ & Ptot (MeV/c) < 250

proton decay signal search in SK-I+II data

12

Data is consistent with BG MC

Fully contained data are well predicted by atmospheric neutrino MC.

Lifetime limits

Lifetime limits by 141kton year exposure calculated by Bayesian method.

- $p \rightarrow e^+ \pi^0$ (preliminary)
- SK-I+II Combined limit: 8.2 x 10³³ years (@90%C.L.)
 - previous limit by SK (25.5kton year): 1.6 x 10³³ years
- $p \rightarrow \mu^+ \pi^0$ (preliminary)
- SK-I+II Combined limit: 6.6 x 10³³ years (@90%C.L.)

- previous limit by IMB (7.6kton year): 4.7 x 10³² years

14

$n \rightarrow \overline{\nu} \pi^0$ search

$n \rightarrow \overline{\nu} \pi^0$ mode search

predicted by minimal SUSY SO(10) model with (B-L) violation
we can only see π⁰ → 2γ
inevitably large background!
look for excess in π⁰ momentum distribution above atmospheric neutrino BG

Event Selection Criteria 1. fully contained, fiducial volume 2. 2 *e*-like rings 3. $85 < M_{\pi} (MeV/c^2) < 185$ 4. no decay-e

Detection Efficiency SK-I: 48.5% SK-II: 44.0%

$n \rightarrow \overline{\nu} \pi^0$ mode search

Minimize χ^2 to find best fit parameters, with systematic terms

$n \rightarrow \overline{v} \pi^0$ Result

n-n oscillation search in SK-I

neutron anti-neutron oscillation

motivation

 Several types of (B-L)-violating Gauge theories predicts that neutron spontaneously converts to anti-neutron, and vise versa

 \Leftrightarrow n – n oscillation

expected signal

1. anti-neutron annihilates with n or p.

2. pions are emitted isotropically with high multiplicity (>~ 4π)

 2π

 $\pi^+\pi^-\omega$

 $2\pi^+ 2\pi^- \pi^0 \pi^0$

n+p $\pi^+\pi^0$ $\pi^+\pi$ 1% $\pi^0 \tau$ $\pi^{+}\pi^{0}\pi^{0}$ 8% $\pi^{+}\pi^{0}\pi^{0}\pi^{0}$ $\pi^+ \tau$ 10% $\pi^+\pi^+\pi^-\pi^0$ π^+ 22% $2\pi^{+}\pi^{-}2\pi^{0}$ 36% $\pi^+ \tau$ $2\pi^+\pi^-\omega$ 16% 2π

7%

n+n	
-	2%
-0	1.52%
$t^{-}\pi^{0}$	6.48%
$\pi^{-}\pi^{0}\pi^{0}$	11%
$\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	28%
2π-	7%
$2\pi^{-}\pi^{0}$	24%

10%

10%

Branching ratio derived from Bubble Chamber $p + \overline{d}$ data $3\pi^{+}2\pi^{-}\pi^{0}$

Event Selection Criteria

n-n search in SK-I

Total P (MeV/c)

Estimated Backgrounds: 23.99 events

sys. uncertainty: 23.7% (dominant: cross sections of neutrino interaction and event reconstruction)

Detection Efficiency: 12.0% sys. uncertainty: 22.9% (dominant: pion nuclear effect)

Candidates: 23 events

No significant excess above atmospheric neutrino BG

n-n search result

 $n \rightarrow \overline{n}$ transition probability , $P(\Gamma|n)$ is calculated by Bayesian statistics and Bayesian theorem.

$$T_{bound} = \frac{1}{\Gamma_{limit}} > 1.97 \times 10^{32} \text{ yrs (90\% CL) (SK-l)}_{(preliminary)}$$

Bound neutron lifetime can be interpreted to the oscillation time of the free neutron by

 $\label{eq:transform} \begin{array}{l} T_{bound} = R \times (\tau_{free})^{2} \\ \tau_{free} > 2.49 \times 10^{8} \, \text{sec} \\ (\text{preliminary}) \end{array} \begin{array}{l} \text{used the suppression factor } R \\ \text{calculated by Dover et al.} \\ \text{Phys. Rev. D27 (1983) 1090} \end{array}$

Theoretical upper limit $< 10^9 \sim 10^{10}$ sec (K.S.Babu et al., Phys.Lett.B 518(200)269)

Future Prospects

- Sensitivity for $p \rightarrow e^+ \pi^0$ will reach to $\tau/Br \sim 10^{34}$ yrs in near future.
- Super-K has published some favored modes $(p \rightarrow e^+ \pi^0, p \rightarrow \nu K^+ \dots)$
 - → IMB still has the best limits in many modes (in PDG)
- Recently many efforts are devoted to cover unsearched modes.

$$- (p \rightarrow vK^{+} \text{ in SK-II})$$

- systematical study for (chargedlepton+meson) mode

• $N \rightarrow (e^+, \mu^+) + (\pi, \eta, \rho, \omega)$ Coming Soon!

- $p \rightarrow \mu^+ K^0_{\mu}$
- $-pp \rightarrow K^+ K^+$

$$- p \rightarrow v \pi^{\dagger}$$

- etc...

Summary

- Detection efficiencies for proton decay signals in SK-II are comparable to that in SK-I.
- Updated the results of nucleon decay searches via $p \rightarrow e^+ \pi^0$, $p \rightarrow \mu^+ \pi^0$ and $n \rightarrow \overline{\nu} \pi^0$ and $n \overline{-n}$ oscillation.
 - No positive signals were found.
 - Updated the lifetime limits
 - $p \rightarrow e^+ \pi^0$: $\tau/B > 8.2 \times 10^{33}$ years
 - $p \rightarrow \mu^+ \pi^0$: $\tau/B > 6.6 \times 10^{33}$ years
 - *n*- \overline{n} oscillation: $\tau_{\text{free}} > 2.49 \times 10^8 \text{ sec}$
 - $n \rightarrow \bar{\nu} \pi^0$: $\tau/B > 8.8 \times 10^{32}$ years

Super-K will continue to be the largest proton decay experiment until NNN starts.

- We will continue to keep searching for proton decay signals.
- We are now trying to cover unsearched decay modes.