New Directions in Neutrino Research: Mobile Detectors for Geology, Neutrino Mixing and Mass Measurements, and Nonproliferation

Robert C. Svoboda, University of California at Davis (for John Learned plus colleagues at UH and elsewhere)

(HANOHANO consists of about 20 institutions, collaboration not yet official, including U. Tohoku, U. Maryland, U. Alabama, Stanford, Caltech, UC Davis, U. Munich, and more)

12 September 2008

John Learned at NNN08

Outline

Neutrino Oscillation Physics

- Review KamLAND results
- Mixing angles θ_{12} and θ_{13}
- Mass squared difference Δm_{31}^2
- Mass hierarchy

Neutrino Geophysics

- U & Th mantle flux
- Th/U ratio
- Georeactor search

Hanohano:

- Deep ocean: measure mantle neutrinos
- Mobile: position off shore reactor at ideal distance(s)
- Detector Studies

Reactor Monitoring:

- Now, near and short range
- Long distance, far future
- Other studies, future

Hanohano a mobile deep ocean detector

Neutrino Oscillation Physics with Hanohano

- Precision measurement of <u>mixing parameters</u> needed (4 of 5 in Hanohano)
- World effort to determine θ_{13} (= θ_{31}) (Hanohano, unique method)
- Determination of <u>mass hierarchy</u> (Hanohano novel method)
- Neutrino properties relate to origin of matter, formation of heavy elements, and may be key to unified theory (pace Landscape folks).

MNSP Mixing Matrix

2 mass diffs, 3 angles, 1 CP phase

Solar, KamLAND

Atmospheric, SuperK

3-v Mixing: Reactor Neutrinos

$$\begin{split} \mathsf{P}_{ee} = & 1 - \{ \cos^4(\theta_{13}) \sin^2(2\theta_{12}) [1 - \cos(\Delta m^2_{12} L/2E)] \\ & + \cos^2(\theta_{12}) \sin^2(2\theta_{13}) [1 - \cos(\Delta m^2_{13} L/2E)] \\ & + \sin^2(\theta_{12}) \sin^2(2\theta_{13}) [1 - \cos(\Delta m^2_{23} L/2E)] \} / 2 \end{split}$$

mixing angles

mass diffs

wavelength close, 3%

- Survival probability: 3 oscillating terms each cycling in L/E space (~t) with own "periodicity" (Δm²~ω)
 - Amplitude ratios ~13.5 : 2.5 : 1.0
 - Oscillation lengths ~110 km (Δm_{12}^2) and
 - ~4 km ($\Delta m_{13}^2 \sim \Delta m_{23}^2$) at reactor peak ~3.5 MeV
- ½-cycle measurements can yield
 - Mixing angles, mass-squared differences
- Multi-cycle measurements can yield
 - Mixing angles, precise mass-squared differences
 - Mass hierarchy
 - Less sensitivity to systematic errors

Reactor v. Spectra at 50 km

~4400 events per year from San Onofre

Fitting will give improved θ_{12} x 10 x 10 10000 3000 Energy, E 2500 8000 2000

Fourier Transform on L/E to Δm²

Includes energy smearing

50 kt-y exposure at 50 km range

sin²(2θ₁₃)≥0.02 Δm²₃₁=0.0025 eV² to 1% level

Learned, Dye, Pakvasa, Svoboda *hep-ex/0612022*

Measure Δm_{31}^2 by Fourier Transform & Determine v Mass Hierarchy

Learned, Dye, Pakvasa, and Svoboda, hep-ex/0612022

Hierarchy Determination

Ideal Case with 10 kiloton Detector, 1 year off San Onofre

Distance variation: 30, 40, 50, 60 km

Hierarchy tests employing Matched filter technique, for Both normal and inverted hierarchy on each of 1000 simulated one year experiments using 10 kiloton detector.

1000 kt-yrs separates even at 0.02

Normal Hierarchy

Sensitive to energy resolution: probably need 3%/sqrt(E)

12 September 2008

New Hanohano Physics Simulation

- Main points of full maximum Liklihood treatment
 - 10 kt detector, 5MWt power plant, same scint. as KamLAND
 - Systematics considered:
 - "general efficiency": fiducial volume, number of protons, eff. of cuts, etc.
 - error in detector resolution estimation.
 - Systematics ignored at this point:
 - overall energy scale error
 - background uncertainties
- Conclusions: different optimal baselines for different measures, but confirm earlier calculations with Fourier methods.

Calculations my Misha Batygov at UH, paper out soon.

Estimation of the statistical significance for Hierarchy Determination

- Thousands of events necessary for reliable discrimination big detector needed
- Longer baselines more sensitive to energy resolution; may be beneficial to adjust for actual detector performance
 Thenks Misks Detugory

Thanks Misha Batygov

12 September 2008

John Learned at NNN08

GeoNeutrinos

Big picture questions in Earth Sci

What drives plate tectonics?

What is the Earth's energy budget?

What is the Th & U conc. of the Earth?

Energy source driving the Geodynamo?

Convection in the Earth

The mantle convects.

 Plate tectonics operates via the production of oceanic crust at mid-ocean ridges and it is recycled at deep sea trenches.

12 September 2008

How much Th, U and K is there in the Earth?

Inconsistent - Heat flow measurements - Geochemical modeling - Neutrino Geophysics

Earth's Total Heat Flow

 Conductive heat flow measured from bore-hole temperature gradient and conductivity

> Total heat flow <u>Conventional view</u> 44±1 TW <u>Challenged recently</u> 31±1 TW

strongly model dependent

Discrepancy?

- Est. total heat flow, 44 or 31TW est. radiogenic heat production 19TW or 31TW give Urey ratio ~0.4 to ~1
- Where are the problems?
 - Mantle convection models?
 - Total heat flow estimates?
 - Estimates of radiogenic heat production rate?
- Mantle geoneutrino measurements can constrain the planetary radiogenic heat production.

What Next for Geonus?

- Measure gross fluxes from crust and mantle
- Discover or set limits on georeactors.
- Explore lateral homogeneity
- Better earth models
- Use directionality for earth neutrino tomography
- Follow the science....

Predicted Geoneutrino Flux

Reactor Flux irreducible background

Geoneutrino flux determinations -continental (Dusel, SNO+, LENA?) -oceanic (Hanohano) synergistic

John Learned at NNN08

More dramatically... Why one wants to go to the ocean to measure the mantle neutrinos

Locations for Possible Geonu Experiments

Color indicates U/Th neutrino flux, mostly from crust

John Learned at NNN08

Hanohano Engineering Studies Makai Ocean Engineering

- Studied vessel design up to 100 kilotons, based upon cost, stability, and construction ease.
 - Construct in shipyard
 - Fill/test in port
 - Tow to site, can traverse Panama Canal
 - Deploy ~4-5 km depth
 - Recover, repair or relocate, and redeploy

Barge 112 m long x 23.3 wide

•

Addressing Technology Issues

- Scintillating oil studies in lab
 - P=450 atm, T=0°C
 - Testing PC, PXE, LAB and dodecane
 - No problems so far, LAB favorite... optimization needed
- Implosion studies
 - Design with energy absorption
 - Computer modeling & at sea
 - No stoppers
- Power and comm, no problems
- Optical detector, prototypes OK
- Need second round design

12 September 2008

John Learned at NNN08

Future Dreams: Directional Sensitivity

Directional information provides:
Rejection of backgrounds
Separation of crust and mantle
Earth tomography by multiple detectors

Good News: • Recoiled neutron remembers direction

Bad News:

- Thermalization blurs the info
- Gamma diffusion spoils the info
- Reconstruction resolution is too poor

Wish List:

large neutron capture cross-section
(heavy) charged particle emission &
good resolution detector (~1cm)

Towards Directional Sensitivity 1 ⁶Li loading helps preserving directional information • ⁶Li + $n \rightarrow a$ + T : no gamma-ray emission Natural abundance 7.59% Large neutron capture cross-section: 940 barn Neutron Capture Position (MC) Delayed Event Position (MC) events events KamLAND LS KamLAND LS ¹⁰B loaded LS (1.0%) ¹⁰B loaded LS (1.0%) ⁶Li loaded LS (0.15%, 1.5%) ⁶Li loaded LS (0.15%, 1.5%) -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1

Various chemical forms for Li loading are being tested...

Tohoku

Towards Directional Sensitivity 2

~1M pixel imaging can achieve 1 cm resolution

- Proper optics need to be implemented
- Sensitivity to 1 p.e. and high-speed readout required

First step for LS imaging, just started...

Nuclear Proliferation is a Great Danger to Mankind: Can v Physics Help?

- Monitor cooperating reactors for compliance with stated operations (no making bomb material)? Yes, close-in.
- Detect clandestine reactors at modest ranges? Yes.
- Track multiple reactor operations in a region? Yes, with multi-detectors.
- But are these affordable? Yes, but large arrays need development.
- What about bomb detection? Comes for free with very large array.

Security Applications for Antineutrino Detectors

Spectrum can help separate near and far reactors

10 MWt reactorin N. Korea10 km distance1 kiloton detector

Misha Batygov

Reactor Monitoring with Anti-Neutrinos

small 10 MWt reactor observed with 10MT detector no background

- daily ops out to ~60 km

- annual output to >1000 km

Summary of Expected Results Hanohano- 10 kt-1 yr Exposure

- Neutrino Geophysics- near Hawaii
 - Mantle flux U geoneutrinos to ~10%
 - Heat flux ~15%
 - Measure Th/U ratio to ~20%
 - Rule out geo-reactor if P>0.3 TW
- Neutrino Oscillation Physics- ~55 km from reactor
 - Measure $\sin^2(\theta_{12})$ to few % w/ standard ½-cycle
 - Measure $\sin^2(2\theta_{13})$ down to ~0.05 w/ multi-cycle
 - $-\Delta m_{31}^2$ to less than 1% w/ multi-cycle
 - Mass hierarchy if θ₁₃≠0 w/multi-cycle & no near detector; insensitive to background, systematic errors; complementary to Minos, Nova
 - Lots to measure even if $\theta_{13}=0$

Much other astrophysics and nucleon decay too....

Additional Physics/Astrophysics

Hanohano will be biggest low energy neutrino detector (except for maybe LENA)

- Nucleon Decay: SUSY-favored kaon modes
- Supernova Detection: special v_e ability
- Relic SN Neutrinos
- GRBs and other rare impulsive sources
- Exotic objects (monopoles, quark nuggets, etc.)
- Long list of ancillary, noninterfering science, with strong discovery potential

Broad gauge science and technology, a program not just a single experiment.

Summary

- Close-in reactor monitoring ready to go.
- Need development of segmented detectors for surface applications.
- Hanohano proposal for portable, deepocean, 10 kiloton, liquid scintillation electron anti-neutrino detector ready to move ahead.
- Transformational geophysics, geochemistry, particle physics and astrophysics: answers to key, big questions in multiple disciplines. Enormous discovery potential.
- Program under active engineering, Monte Carlo simulations, and studies in laboratory and at sea.
- Collaboration formed, aimed at decade or more multi-disciplinary program between physics and geology. Open to more collaborators.
- Future, much science and many applications for low energy neutrino detection with huge instruments, and particularly remote monitoring of reactors.

12 September 2008

Urey Ratio and Mantle Convection Models

radioactive heat production

Urey ratio

heat loss

 Mantle convection models typically assume: mantle Urey ratio: 0.4 to 1.0, generally ~0.7

 Geochemical models predict: Urey ratio 0.4 to 0.5.

generally geologists believe these inconsistent

John Learned at NNN08