

PHOTONIS tubes for large scale experiments

Contents

- 1. PHOTONIS Group and its production capability
- 2. Underground Neutrino Experiments
- 3. Underwater Neutrino Experiments
- 4. Reactor Neutrino Experiments
- 5. Atmospheric Cherenkov experiments
- 6. New perspectives

- 1. PHOTONIS Group and its production capability
- 2. Underground Neutrino Experiments
- 3. Underwater Neutrino Experiments
- 4. Reactor Neutrino Experiments
- 5. Atmospheric Cherenkov experiments
- 6. New perspectives

EUROPEAN SITES PHOTONIS Netherlands BV IIT - 159 persons **PHOTONIS** France SAS PMT–IIT– Special Products 600 persons RODEN MERIGNAC BRIVE **PHOTONIS Group Headquarters** 10 persons

PRODUCTS

> Photomultiplier Tubes:

Medical Imaging Industrial Applications Physics Research

Image Intensifiers Tubes:

Night Vision (defence or surveillance) Intensified Charge Coupled Devices Scientific, Medical and Industrial Applications

Industrial and Scientific Detectors:

Streak Tubes Micro Channel Plates Neutron and Gamma Detectors Single Channel Electron Multipliers Multichannel Photomultipliers Ion Guides / Drift tubes

Power Tubes

SINDTOHO

PHOTONIS mass production

AUGER in Argentina (9" PMT XP1805)

PHOTONIS mass production

VERITAS XP2970 (UV sensitive)

PHOTONIS mass production

- 1. PHOTONIS Group and its production capability
- 2. Underground Neutrino Experiments MEMPHYS, DUSEL, hyper K...
- 3. Underwater Neutrino Experiments
- 4. Reactor Neutrino Experiments
- 5. Atmospheric Cherenkov experiments
- 6. New perspectives

Since water tanks are used for Cherenkov light detection, the goal is to design 12 inches tube (XP1812) to be suited for high pressure experiments.

Therefore a new bulb has been designed in collaboration with IPNO in the PMm² programm. Will withstand 10 bars (90m water height). New optic design will also improve detection efficiency.

Other new features : Higher Quantum Efficiency
Higher Collection Efficiency
Low After Pulses Rate
High Peak to Valley Ratio
Water-proof base available

- 1. PHOTONIS Group and its production capability
- 2. Underground Neutrino Experiments
- 3. Underwater Neutrino Experiments Km3, Baïkal
- 4. Reactor Neutrino Experiments
- 5. Atmospheric Cherenkov experiments
- 6. New perspectives

The goal is to design 10 or 12 inches tube to be suited for underwater muon tracking.

✓ High QE

- ✓ Large photocathode areas
- ✓ Wide angular coverage
- ✓ Good single photon resolution

QE vs DQE : a key difference

It is not only important to convert photons into electrons : QE but also not to lose them before multiplication effect : Collection Efficiency

$$DQE = \frac{(\# PE _ captured _ by _ 1st _ Dynode)}{(\# Insident _ Photons)}$$

= QE \cdot CE

New improvements on QE and CE have been made to increase DQE

Improving intrinsic QE of photodetectors ?

Some key technical parameters to increase photocathode QE

1. Surface structure and cleanliness : Impact on photocathode growth & diffusion of impurities

2. Photocathode interface : Optical coupling with entrance window : internal reflection

3. Photocathode material : Purity of basic materials (dispensers) - Composition

4. Photocathode growth : Growth defects – Uniformity – Band bending

5. Photocathode thickness : Compromise absorption of photons – recombination of electrons

New bialkali photocathodes

multi PMTs in one glass sphere

Ref. ICRC0489, P. Kooijman

8" XP1886 new process bialkali super²

SN 1161 QE 36% at peak

Drawbacks in high QE

- Drawbacks of increasing QE
 - 1. Noise : increases with QE

(not linear function, depending on improvement process) Resulting S/N ratio should be higher. This is the case with PHOTONIS new process for super3 PC. Leads to much higher S/N ratio.

2. AP : increases also with QE

Which level of AP physicists can tolerate?

- 3. Stringent specs could lead to low yield and then higher cost.
- 4. Aging?

- 1. PHOTONIS Group and its production capability
- 2. Underground Neutrino Experiments
- 3. Underwater Neutrino Experiments
- 4. Reactor Neutrino Experiments Daya Bay, RENO...
- 5. Atmospheric Cherenkov experiments
- 6. New perspectives

Proton decay experiments $\sin^2 2\theta_{13}$ Tube : 8" or 10"

Iow radioactivity levels (ie glass and piece parts)
 water and oil proofness

✓ pressure withstandth (water pool)

8" tube and water/oil proof base

XP18060/P1

Various glasses used by PHOTONIS

Glass Sample	⁴⁰ K	¹³⁷ Cs	238U	²²⁶ Ra	²²⁸ Ra	²²⁸ Th
Quartz	44 ± 1	<0,015	2,3 ± 0,8	2,61 ± 0,04	$2,1 \pm 0,06$	$2,56 \pm 0,05$
ZNK7	14,7 ± 0,7	<0,03	4,8 ± 1,6	8,6 ± 0,1	$7 \pm 0,2$	$6,4 \pm 0,1$
8245 glass Schott	26	<0,02	9	12,6	2,3	2,6
D47.2	9,7	<0,008	0,9	0,84	0,45	0,51
D53X (mesure 1)	$1,7 \pm 0,1$	<6	<0,12	1,59 ± 0,03	$0,15 \pm 0,02$	0,1 ± 0,01
D53X (mesure 2)	3,9	<0,015	<0,33	3,6	0,22	0,04

- 1. PHOTONIS Group and its production capability
- 2. Underground Neutrino Experiments
- 3. Underwater Neutrino Experiments
- 4. Reactor Neutrino Experiments
- 5. Atmospheric Cherenkov experiments AUGER, HESS, CTA...
- 6. New perspectives

Atmospheric Cherenkov detection Tube : small (1'') or large (9'')

Very low after pulsesHigh Collection Efficiency

Very low afterpulses due to new process (<0.1%) Fast (1.8ns rise time) High P/V Gain stability in time

Mass production, cost reduction policy Good yield (HESS knowhow)

Atmospheric Muons Detection (Cherenkov light in water)

Foil vs focused

Multiplier with dynode	foil	linear focused	
Collection uniformity	+++	+	
Pk – D1 isochronism	+++	+	
After pulses	<1%	<5%	
		+++	
	aver. 1.4 max. at 1.8	typ. 3 (spec min. at 2)	

• Improvement work : mix both concepts D1 foil and rest is standard dynodes : XP1805

Two different multipliers

- Improvement work on collection
 Good to improve QE, do not forget to look at CE
 Two types of hemispherical tubes available at PHOTONIS:
 - 9" tube equiped with a first "foil" 1st dynode(XP1805 AUGER tube).
 - 5", 8", 10" and 12" equiped with a linear focused dynode

- 1. PHOTONIS Group and its production capability
- 2. Underground Neutrino Experiments
- 3. Underwater Neutrino Experiments
- 4. Reactor Neutrino Experiments
- 5. Atmospheric Cherenkov experiments
- 6. New perspectives

PHOTONIS designs a large spherical hybrid photodetector with a central anode and a scintillating crystal as a first amplification step : XHPD This development performed together with teams at CERN and CNRS-CPPM is a modern extension of the Dumand Smart PMT principle.

Xtal-HPD tube has excellent time and very good single electron resolutions

- ✓ no prepulses
- ✓ low level of afterpulses (~0)
- ✓ ~100% effective collection effiency
- ✓ 1 ns TTS (FWHM)
- ✓ very good SER (competitive to HPD)
- immunity to terrestrial magnetic field
- ✓ > 2π sensitivity

Christian JORAM et al, CERN

3-D (Simion-8 ®) electrostatic simulation and Photocathode mapping (polar angle 'double cathode' enhancements seen)

Greg Hallewell et al, CPPM Marseille

- Photonis have identified the envelope and pc.deposition technique as critical to cost
- First prototype (above): all glass envelope
 & fully internal bialkali photocathode deposition
- CPPM to measure of TT, sTT, HT behaviour, I-integrated photocurrent, multi-g res...
- Mid 2008: Fabrication & test of prototype 8" tubes with metal anode (we are here)
- End 2008: Fabrication & test of 8" HPD tubes with crystal anodes in different configurations

XHPD perf/cost

- . X-HPD Performances are superior to traditional PMTs on major critical points.
- . Manufacturing costs are higher (crystal, extra outer PMT)
- . Manufacturing X-HPD is difficult : lower yield

Even if global cost is higher, the ratio Performance/Cost remains by far in favor of X-HPD

Thank you for your attention

Bruno COMBETTES Photonis Group product management b.combettes@photonis.com

