

Orsay Micro Electronics Group Associated

21/06/2010

DULUCQ Frederic

Table of contents

- Part 1: PMM2 & PARISROC Overview
- Part 2: Why a second PARISROC
- Part 3: Presentation of PARISROC2
- Part 4: Measurements
- Part 5: Conclusion & future

Part1: PMM2 & PARISROC 1 overview

Part2: PARISROC 1 limitations (charge) () mega

Good overall performance of PARISROC1

- Good analog signals
- Good chip uniformity vs channels
- Good complete chain results

BUT, some extra noise observed

- Low frequency noise
- Clock noise
- Coupling signal

Trigger limited to 10 σ due to discriminator coupling (Noise 13 fC)

Part2: PARISROC 1 limitations (time)

mega

 Hit rate → Parisroc1 has too high loss rate (up to 16%) for our physics (depends on PMT)

	$R_{ m bkg}$	n _{SCA}	$n_{ m bits}$	F_{RO}	Taux de pertes (%)
Parisroc1	5 kHz	2	12	10 MHz	16 ± 12
	0.1 kHz	2	12	10 MHz	0.008 ± 0.6
	5 kHz	2	10	10 MHz	6 ± 10

• Time measurement: Delay box jitter (max 300 ps) in time measurement

Part3: PARISROC 2 analog meaa ime output **Ramp TDC SCA fine time Added blocs** Depth 2 Ramp ADC Charge output **SCA low gain** SSH **MUX** Depth 2 **SCA** high gain 50 Ω SSH Depth 2 ext **↑**.Hold Thieshold gain **VARIABLE** ext. Hold Output OR :7 Auto-trig Discri. **FSH** Adjustable gain amplifier **Trigger** Adjust = 1-4Output **Threshold** Ramp TDC, Ramp ADC and 10-bit DAC 10-bit DAC 10-bit DAC 10-bit DAC common to all channels

Part3: PARISROC 2 digital (1)

- SCA management of 16 channels independents
- SCA management with depth of 2 for time and charge
- SCA management like FIFO (ping-pong)
- Timestamp 24b +1b counters @ 10 MHz (1.67s)
- 40 MHz clock for ADC + SCA management + readout

	v1	v2
Channel #	4	4
Coarse time	24	24
Extra Coarse time	NA	1
Gain used	NA	1
Fine time (ADC)	12	10
Ramp used	NA	1
Charge (ADC)	12	10
Total	52 bits	51 bits

Part3: PARISROC 2 digital (2)

Part3: Hit rate improvement

mega

Parisroc2 must be faster than Parisroc1 (gain of 4 minimum)

	$ m R_{bkg}$	$n_{ m SCA}$	$n_{ m bits}$	F_{RO}	Taux de pertes (%)
Parisroc1	5 kHz	2	12	10 MHz	16 ± 12
	0.1 kHz	2	12	10 MHz	0.008 ± 0.6
	5 kHz	2	10	10 MHz	6 ± 10
Parisroc2 ->	5 kHz	2	8*	40 MHz	0.24 ± 3.1
	5 kHz	4	9*	40 MHz	$\boldsymbol{0.007 \pm 0.7}$

- Conversion 8-9-10 bits by selecting ramp slope
 - 8-9 bits is enough accuracy for time and for charge
 - Internal counter now 10-bit
 - Max conversion time: 25 us @ 10 bits
- Readout @ 40 MHz
 - Max readout time 25 us

	PARISROC1	PARISROC2
Conversion	103 us	26 us
Readout	101 us	25 us
Total	204 us	51 us

Worst case: 16 chn hit + ADC Ovfl

Part3: Fine time improvement

- New fine time (Measurement → Talk S.DROUET)
 - The 2 ramps are stored in a capacitors
 - Overlap around 40ns between ramps
 - Separate hold for charge and time (jitter issue)
 - Need a signal to know which ramp is active and linear
 → StartRamp delayed by 20ns
 - In overlap zones, coarse time counter has already counted "+1" as delay > clock tree latency + clock skew

Part3: Coarse time (1)

- mega
- In PARISROC1, possible error in TS for triggers synchronous with clock
- In v2, 2 counters are implemented:
 - A 24-bit gray @ rising edge of 10MHz (same as v1)
 - A 1-bit @ falling edge of 10MHz

Part3: Coarse time (2)

• Thanks to overlap, we assume that converted fine time is always good (selection made with 1-bit reg in analog part).

For trigger synchronous with counter →
Data stored = (N or N+1), Cpt1Bit and Ttdc

meaa

For trigger synchronous with StartDelayed → Data stored = N+1, Cpt1Bit and (TtdcRamp1 or TtdcRamp2)

Recover real time →
If (Ttdc > 90 ns) then
If LSB(BIN(CptTS)) = (Cpt1Bit) then
Time = CptTS + Ttdc
else
Time = (CptTS-1) +Ttdc
else
Time = CptTS + Ttdc

Part4: First results (charge)

- Improvement in noise low noise; no clock noise
- No coupling signal
- Trigger improvement@ 1/3 of p.e. (50fC @ PMT gain 10⁶)

Part4: Charge linearity (full chain)

Part5: Conclusion & future

- PARISROC2 up to now:
 - Auto-trigger + chn independent OK
 - No clock noise
 - No Trigger coupling
 - Noise OK to see signal 1/3pe (50fC)
 - Digital part speed up OK
 - New TDC integrated (see S. DROUET Talk)

meaa

- PARISROC is evaluated by other experiments:
 - DUSEL (large water cerenkov)
 - LENA (liquid scintillator)
 - IHEP Beijing

- PARISROC for the future:
 - Improve rate capability
 - Need move to pipeline ADC and multiple data lines

Wilki ≺	Present chips
	Pipeline MSPS

	PARISROC	Hit Rate (KHz)
7	V1	5.4
ſ	V2	21.4
	2V1 (80 MHz)	42.7
	2V2 (80 MHz + 8 SL)	83.1
	3V1 (40MHz + 8 SL)	216.2
	3V2 (80MHz + 8 SL)	432.4