

Résultats de test ADC 100 MHz 8 bits

Sébastien CRAMPON,

LPC/pole MicRhAu

S. CRAMPON - VLSI-2010 @ LAL - Sept. 22-23-24, 2010

- Rappel des caractéristiques de l'ADC et de sa structure globale (voir talk/paper TWEPP-09)
- Les corrections faites sur le Layout
- Les résultats de tests en « statique » et en « dynamique », puis quelques résultats de tests après corrections

Structure de l'ADC

- Entrées différentielles 2V c. à c.
- 100MHz Pipeline
- 2,5bits par étage
- Structures en courant => pas de références externes
- 4 périodes de latence
- 24 comparateurs
- Meme horloge sur chaque étage
- Gain réparti entre blocs et système en boucle ouverte

La voie de comparaison

Cette voie est composée de trois structures principales:

•Le V2C

- •L'échelle différentielle en courant
- •Le comparateur

L'échelle différentielle en courant

La voie de gain

Cette voie est composée de deux structures principales:

•Deux T/H

•Le soustract x2 (+ DAC en courant)

MICroelectronic RHone AUvergne

T

Architecture	2.5-bit/stage
Technology	0.35µm SiGe
Area	2425 μm x 2775 μm
Supply Voltage	3.5 V (Analog), 3.3 V (Digital)
Resolution	8 bits (9 bits possible)
Full Scale	2V differential
Conversion rate	100MS/s
Consumption	240mW

Chip area = 6.7 mm²

Résultats de tests premier prototype

MICroelectronic RHone AUvergne

ADC Output (in V) according to the entry (in V)

Seule une partie du signal est exploitable, présence de sauts sur une moitié des références et d'un offset.

Source des erreurs

Le second banc de test (mesures du second prototype)

MICroelectronic RHone AUvergne

- •Version totalement générique (utilisable avec des ADC, shapers...)
- •Utilisation d'un DAC 16 bits pour générer le signal d'entrée
- •Control de la carte par USB via Labview

•Système beaucoup plus performant que le premier banc de test: prévu pour des tests à des fréquences de plusieurs centaines de MHz

Résultats de mesures

S. CRAMPON - VLSI-2010 @ LAL - Sept. 22-23-24, 2010

Résultats de tests

Statiques

Dynamique totale => 1,9V

Résultats de tests

INL => +/- 2LSB

DNL => -1,7 à 0,9LSB

Perte de monotonicité au palier 125mV

Résultats de tests

Dynamiques

Signal d'entrée => +/- 900mV

SINAD:

•avec Fe = 0,1MHz, 35,62dB (ADC 16bits de ref: 48,14dB)

•avec Fe = 1MHz, 27,82dB (ADC 16bits de ref: 28,83dB)

Mesures limitées aux caractéristiques de la sinusoïde générée par le FPGA

S. CRAMPON - VLSI-2010 @ LAL - Sept. 22-23-24, 2010

Résultats de tests (après corrections)

• Statiques

MICroelectronic RHone AUvergne

Dynamique totale => 1,9V

Résultats de tests (après corrections)

MICroelectronic RHone AUvergne

Le Chip n°7

• Chip fonctionnant 100MHz (ici résultats sans corrections)

Dynamique totale => 1,6V

Résultats avec corrections

Dynamique totale => 1,8V

Simulations parasitiques

Résultats au niveau parasitique

Résistances extraites => 0,1 Ohms

Capacités extraites => 0,01 fF

Signal d'entrée de -150mV à 150mV (pour avoir seulement les deux paliers principaux)

S. CRAMPON - VLSI-2010 @ LAL - Sept. 22-23-24, 2010

- 5 chips fonctionnent à 50MHz
- 1 chip fonctionne à 100MHz
- L'avenir:
 - Détermination de la cause de ce saut
 - Développement d'une version entièrement en courant