

Utilisation d'un **FPGA** dans l'expérience *MightyLaser*

Journées vlsi 2010 LAL Orsay 24 juin | 11:00 | 11:20 jehanno@lal.in2p3.fr

PLAN

• Introduction (3)

 \bigcirc Le système DAQ (4)

O Exemples d'implémentation dans le FPGA (10)

- \bigcirc Identification
- Filtres numériques
- Q La fonction Pound-Drever-Hall numérique

17

Introduction

ANR-08-BLAN-0280-01 Amplification dans une cavité Fabry-Perot d'un laser à fibre picoseconde de très forte puissance moyenne • Application à la production de rayons gamma par interaction compton

Amplification par **sommation** du champ laser **incident** avec le champ **intra-cavité** : **résonance** de la cavité Phénomène **instable** (*bruits*) : la DAQ doit réaliser des **asservissements** de **longueurs**

Spécifications DAQ

Système : Laser / Cavité Fabry-Perot

Amplification optique $f_{REP} = f_{CAV}$ $\Delta \varphi_{ce} = 0$

Système : Cavité Fabry-Perot / Accélérateur

Interaction Compton			
$f_{CAV} = f_{ACC}$	$\Delta \varphi_{ACC} = 0$		

<u>3</u> 17

PLAN

 \bigcirc Introduction (3)

• Le système DAQ (4)

- O Exemples d'implémentation dans le FPGA (10)
 - \bigcirc Identification
 - Filtres numériques
 - Q La fonction Pound-Drever-Hall numérique

• Carte VHS ADAC V2 (LYRTECH)

dans un châssis **cPCI**

- -- Pas de processeur calcul en virgule fixe
- -- bruit de sortie BF non prévu (conception) impose sorties différentielles

• Synoptique fonctionnel

source: LYRTECH

- ++ 8 voies IN / 8 voies OUT
- ++ Temps in/out 100ns

important pour les marges de phase

Le FPGA

- 5 17
- Le code du FPGA contient la gestion des I/O (cPCI gateway, GPIO, SDRAM...) et une partie User Design.
- L'ADC et le DAC sont connectés directement au FPGA (fil à fil)

Environnement MATLAB/SIMULINK

- Ecriture d'un modèle (.mdl) sous Simulink : ensemble de blocs fonctionnels connectés entre eux
- Blocs : SIMULINK (discarded), XILINX (100, compiled), LYRTECH propriétaires (ADC, DAC), VHDL user (black box)

- Outil System Generator : concaténation / création d'un modele_files.vhd (port map automatique du top)
- Appel de xflow.exe : Synthèse / Placement / Routage / Generation bitstream / Chargement / Run

ENTREES	TRAITEMENTS réalisés par le FPGA		SORTIES
acquisition signaux analogiques acquisition signaux logiques	algorithmes (FSM)	calculs	produire des signaux analogiques produire des signaux logiques
	synthèse de filtres	identification	
	démultiplexage en bande de base	synthèse de fréquences DDS (Direct Digital Synthesis)	
	synthèse de	debug	
acquisition liaison série RX	signaux (triangle)	(traces, histos,)	piloter liaison
	record	playback	série TX

PLAN

- \bigcirc Introduction (3)
- \bigcirc Le système DAQ (4)

Exemples d'implémentation dans le FPGA (10)

- \bigcirc Identification
- Filtres numériques
- Q La fonction Pound-Drever-Hall numérique

17

système G(f) actuateur capteur C(f)A(f) **Filtres correcteurs** H(f) +Sin DDS ΔV ΔV_h ΔV_i ΔV_{c} **FPGA** pour chaque ΔV Sin Cos DC1 DC2 pilotage IHM (C++) Paramètres

• Principe

Balayage de fréquence (DDS) piloté par l'IHM

- Intervalle Fstart / Fstop
- Temps d'intégration
- Nb de points
- Equi-répartition (Lin, Log)
- Gabarit Sinus

Le FPGA est chargé de calculer les Σ sur des **nombres entiers** de périodes - intégration pour obtenir le DC

Extraction Gain/Phase par l'IHM à partir du DC

Production en sortie de fichiers .dat

- compatibles Matlab

- plusieurs scans traçables sur la même courbe avec des résolutions différentes

• Utilisation - Auto-identification H(f) *validation du principe* - A(f), C(f), G(f)

Filtre FIR Finite Impulse Response

Certains filtres non réalisables (intégrateurs) Consomme beaucoup de ressources FPGA

calcul virgule fixe

$$Y(n) = \mathbf{B}_1 \cdot X(n-1) + \mathbf{B}_2 \cdot X(n-2) + \mathbf{B}_3 \cdot X(n-3)$$

$$y(n) = \sum_{k=1}^{N} B(k) x(n-k)$$

17

perte de précision due au réalignement

Troncature des résultats

Récursivité introduit une propagation des erreurs Instabilité

Structure SOS (Second Order Section) : limitation de ces effets Mais ne suffit pas !

Exemple 2 : Implémentation de filtres numériques (SOS, Second Order Section)

$$X(n) = \left[\mathbf{B}_{1} \cdot X(n-1) + \mathbf{B}_{2} \cdot X(n-2) + \mathbf{B}_{3} \cdot X(n-3) \right] - \left[\mathbf{A}_{1} \cdot Y(n-1) + \mathbf{A}_{2} \cdot Y(n-2) \right]$$

Version 1 : tout analogique

Version 2 : mixer et filtre dans le FPGA

- Simplification du front-end analogique encombrement réduit sur la table optique
- Plus de fluctuations du DC de la démodulation le mixer analogique laisse passer le DC gênant pour l'asservissement
- Plus de non linéarité du mixer *le mixer analogique est NL*

Signal PDH démodulé (tout analogique)

17

Exemple 4 : la fonction DPDH (démodulation @5MHz)

