

Journées vlsi 2010 LAL Orsay 24 juin | 11:00 | 11:20

jehanno@lal.in2p3.fr

PLAN

- Introduction (3)
- Characteristic (4) Le système DAQ (4)
- Exemples d'implémentation dans le FPGA (10)
 - Identification
 - Filtres numériques
 - La fonction Pound-Drever-Hall numérique

ANR-08-BLAN-0280-01

Amplification dans une cavité Fabry-Perot d'un laser à fibre picoseconde de très forte puissance moyenne • Application à la production de rayons gamma par interaction compton

Introduction

2

17

$$\lambda = \frac{C}{V}$$

E = h.v

$$E = h \frac{C}{\lambda}$$

diffusion Compton inverse

interaction matière - lumière diffusion d'un électron (e-) sur un photon γ les γ **absorbent** une partie de l'énergie des e-

production de γ,X monochromatiques *sélection angulaire*

applications

- médecine (imagerie, radiothérapie)
- analyses (cristallographie)
- analyse non-destructive (oeuvres d'art)

cavité 4 miroirs Fabry-Perot Ø=1m V= 1/3m³ P~10⁻⁹mbar

> les photons sont issus d'un **laser pulsé** (f_{REP}=178.5MHz)

Amplification par **sommation** du champ laser incident avec le champ intra-cavité : **résonance** de la cavité Phénomène **instable** (*bruits*) : la DAQ doit réaliser des **asservissements** de **longueurs**

Système: Laser / Cavité Fabry-Perot

Amplification optique			
$f_{REP} = f_{CAV}$	$\Delta \varphi_{ce} = 0$		

Système: Cavité Fabry-Perot / Accélérateur

Interaction Compton			
$f_{CAV} = f_{ACC}$	$\Delta \varphi_{ACC} = 0$		

PLAN

- O Introduction (3)
- Le système DAQ (4)
- Exemples d'implémentation dans le FPGA (10)
 - Identification
 - Filtres numériques
 - La fonction Pound-Drever-Hall numérique

• Carte VHS ADAC V2 (LYRTECH)

dans un châssis cPCI

photo: LAL

- -- Pas de processeur calcul en virgule fixe
- -- bruit de sortie BF non prévu (conception) impose sorties différentielles

• Synoptique fonctionnel

source: LYRTECH

- ++ 8 voies IN / 8 voies OUT
- ++ Temps in/out 100ns

important pour les marges de phase

- ORA ACCÉI NÉ
- Le code du FPGA contient la **gestion des I/O** (cPCI gateway, GPIO, SDRAM...) et une partie **User Design**.
- L'ADC et le DAC sont connectés directement au FPGA (fil à fil)

Environnement MATLAB/SIMULINK

6

17

- Ecriture d'un modèle (.mdl) sous Simulink : ensemble de blocs fonctionnels connectés entre eux
- Blocs: SIMULINK (discarded), XILINX (100, compiled), LYRTECH propriétaires (ADC, DAC), VHDL user (black box)

Interface **Simulink** *modele*, *mdl*

- Outil System Generator : concaténation / création d'un modele_files.vhd (port map automatique du top)
- Appel de xflow.exe : Synthèse / Placement / Routage / Generation bitstream / Chargement / Run

modele_files.vhd: 87000 lignes T synthèse: 40 minutes Slices utilisées @XC2V8000: 33747 / 46592 (72%)

ENTREES	TRAITEMENTS réalisés par le FPGA		SORTIES
acquisition signaux analogiques	algorithmes (FSM)	calculs	produire des signaux analogiques
	synthèse de filtres	identification	
acquisition signaux logiques	démultiplexage en bande de base	synthèse de fréquences DDS (Direct Digital Synthesis)	produire des signaux logiques
	synthèse de	debug	
acquisition liaison série RX	signaux (triangle)	(traces, histos,)	piloter <mark>liaison</mark>
	record	playback	série TX

PLAN

- O Introduction (3)
- C Le système DAQ (4)
- Exemples d'implémentation dans le FPGA (10)
 - Identification
 - Filtres numériques
 - O La fonction Pound-Drever-Hall numérique

• BUT

• Eléments du système

Système, Capteur, Actuateur

• Choix des filtres

la structure et les coefficients des filtres correcteurs dépendent des réponses en fréquence des éléments A, G et C

• Identification

vise à déterminer ces fonctions de transfert (ie : 1Hz à 10MHz)

Exemple 1 : Identification (*Fonction de transfert, Gain/Phase*)

• Principe

Balayage de fréquence (DDS) piloté par l'IHM

- Intervalle Fstart / Fstop
- Temps d'intégration
- Nb de points
- Equi-répartition (Lin, Log)
- Gabarit Sinus

Le FPGA est chargé de calculer les Σ sur des **nombres entiers** de périodes

- intégration pour obtenir le DC

Extraction Gain/Phase par l'IHM à partir du DC

Production en sortie de fichiers .dat

- compatibles **Matlab**
- plusieurs scans traçables sur la même courbe avec des résolutions différentes
 - Utilisation
- Auto-identification H(f) *validation du principe*
- A(f), C(f), G(f)

Identification d'un actuateur PZT

Gain

Phase

Filtre FIR Finite Impulse Response

Certains filtres non réalisables (intégrateurs) Consomme beaucoup de ressources FPGA calcul virgule fixe

$$Y(n) = \boldsymbol{B_1}.X(n\text{-}1) + \boldsymbol{B_2}.X(n\text{-}2) + \boldsymbol{B_3}.X(n\text{-}3)$$

$$y(n) = \sum_{k=1}^{N} B(k) x(n-k)$$

Filtre IIR Infinite Impulse Response

Simplicité de synthèse Moins de coefficients pour un FIR équivalent calcul virgule fixe

$$Y(n) = [B_1.X(n-1) + B_2.X(n-2) + B_3.X(n-3)] - [A_1.Y(n-1) + A_2.Y(n-2)]$$

$$y(n) = \sum_{k=1}^{K} B(k) x(n-k) - \sum_{m=1}^{M} A(m) y(n-m)$$

perte de précision due au réalignement

Troncature des résultats

Récursivité introduit une propagation des erreurs Instabilité

Structure SOS (Second Order Section) : limitation de ces effets Mais ne suffit pas !

Enhanced IIR (Infinite Impulse Response)

$$Y(n) = [B_1.X(n-1) + B_2.X(n-2) + B_3.X(n-3)] - [A_1.Y(n-1) + A_2.Y(n-2)]$$

Exemple 3: la fonction DPDH (démodulation @5MHz)

15 17

Version 1: tout analogique

Version 2: mixer et filtre dans le FPGA

- Simplification du front-end analogique encombrement réduit sur la table optique
- Plus de fluctuations du DC de la démodulation le mixer analogique laisse passer le DC gênant pour l'asservissement
- Plus de non linéarité du mixer le mixer analogique est NL

Signal PDH démodulé (tout analogique)

RR Equiripple

Exemple 4: la fonction DPDH (démodulation @5MHz)

FIR *filtre* CORRECTION d'OFFSET IF_OUT = IF - OFFSET IF 20MHZ 32**S** 32S mis avant décalage 32**S** 51.17S IF OUT ECRETEUR FIR [1S, 31 Entier] [1S, 32 Entier, 17 frac] Down Sample5 mixer_config produit 32**S** Reinterpret5 32**S** CORRECTION_OFFSET_IF Reinterpretfi somme Generated by MATLAB(R) 7.4 and the Signal Processing Toolbox 6.7. Generated on: 12-May-2009 10:31:r22 [0.00109100341796875 0.0065765380859375 0.02259063720703125 0.05594635009765625 0.108917236328125 017314910888671875 0.22786712646484375 0.2464752197265625 0.2105560302734375 0.12364959716796875 0.014617919921875 -0.0742645263671875 -0.109405517578125 -0.00454132080078125 -0.02356719970703125 0.03479766845703125 0.0602264404296875 0.0466156005859375 0.01117706298828125 -0.02048492431640625 -0.03151702880859375 -0.217132568359375 -0.00315093994140625 0.0107574462890625 0.0137939453125 0.0083160400390625 0.000701904296875 -0.00405120849609375 -0.00479888916015625 -0.0031890869140625 -0.0013275146484375 -0.00028228759765625 0.0000228881835937] configuration Coefficient Format: Decimal Function Block Parameters: FIR Xilinx Finite Impulse Response Filter (mask) (link) % Discrete-Time FIR Filter (real) Finite impulse response (FIR) filter. % Filter Structure : Direct-Form FIR Hardware notes: Implemented using distributed arithmetic (DA). The hardware over sampling rate % Filter Length : 33 determines the degree of parallelism. A rate of one produces a fully parallel DA filter. A rate of n (resp. % Stable : Yes n+1) for an n-bit input signal produces a fully serial implementation for a non-symmetric (resp., symmetric) % Linear Phase impulse response. Intermediate values produce implementations with intermediate levels of parallelism. % Arithmetic : fixed % Numerator : s16,17 -> [-2.500000e-001 2.500000e-001) % Input : s32,0 -> [-2.147484e+009 2.147484e+009) % Filter Internals : Full Precision [0.00109100341796875 0.0065765380859375 0.02259063720703125 0.05594635009765625 0.10891 Output : s50,17 -> [-4.294967e+009 4.294967e+009) (auto determined) Coefficient Structure Inferred from Coefficients Product : s47,17 -> [-536870912 536870912) (auto determined) : s50,17 -> [-4.294967e+009 4.294967e+009) (auto determined) Number of Bits per Coefficient (always treated as signed) Round Mode : No rounding Binary Point for Coefficients Paramétrage du bloc FIR Number of Channels 1 Polyphase Behavior | Single Rate: sample in - sample out Outil Matlab: FDA Tools Hardware Over-Sampling Rate Use Explicit Sample Period Provide Coefficient Reload Ports Provide Valid Ports Override with Doubles Filter Tupe ----- Show Implementation Parameters Bandpass Bandstop Fpass: 9600 Recopie des coefficients Fstop: 180000

Exemple 4: la fonction DPDH (démodulation @5MHz)

18 Sep 2009

17 17

Violet: transmission (sortie de cavité)

Bleu: si

10.0us
11-7-2.40000µs
10M points

Coupling Impedance Invert Bandwidth
DC AC # 11M2 500 On Off Bandwidth
27 Mar 2009
10 1 1 Label More 675.5823

