

▲口> ▲圖> ▲理> ▲理> 三理 ---

Mesure de la masse du Higgs dans le canal: $e^+e^- \rightarrow ZH \rightarrow e^+e^- + X$ & La reconstruction digitale de l'énergie

Youssef Khoulaki

LPHEMC, Casablanca, Maroc LPSC, Grenoble, France LIA ILCP, France, Suède, Maroc

Journées Jeunes Chercheurs, 2010 Angers, France

ILC (International Lineaire Collider):

- E_{CM} = 90 à 500*GeV*
- E_{CM} = jusqu'à 1 TeV (2^{éme} étape)

•
$$L = 2.10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie JJC Angers, 2010 2 / 27

(日) (同) (三) (三)

La masse de Higgs 0000000000

LDC

International Large Detector

GLD

Youssef Khoulaki, Lab. ILCP

La masse de Higgs & la reconstruction digitale de l'énergie

JJC Angers, 2010 3 / 27

Introd	luction La masse de Higgs	La méthod 0000000
Détect	teur ILD	
	ILD:	
	• Objectif : $\frac{\Delta E}{E} = \frac{30\%}{\sqrt{E(GeV)}}$ (jets)	
	• L $pprox$ 13 m, $\phi pprox$ 13 m	
	• $B = 3.5T$	

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie JJC Angers, 2010 4 / 27

э

- Accès à la totalité de l'énergie dans le CM
- Cinématique de la collision bien définie
- Les événements peuvent être généralement complètement reconstruits

La masse de Higgs

• Détection du Higgs à partir de son mode de production:

- L'observation du H est indépendante de son mode de désintégration
- Réponse assurée quelque soit le scénario
- Reconstruction de la masse de recul du H

$$M_{recul}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$$

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie JJC Angers, 2010 6 / 27

Grille de calcul, VO & CC-IN2P3 Utilisation de la Grille LCG (LHC Computing Grid)

Certificat électronique personnel (MaGrid CA) CNRST-RABAT

- MaGrid CA a été accréditée officiellement le 14 Novembre 2007 par l'association des autorités de certifications Européennes EuGridPMA
- MaGrid CA est le premier membre africain de cette association

Organisation Virtuelle (VO) : (CALICE & ILC)

- hsttps://grid-voms.desy.de:8443/voms/calice
- https://grid-voms.desy.de:8443/voms/ilc

Compte sur une Interface Utilisateur (UI)

- Laboratoire Virtuel : Expérience ILC
- Le CC-IN2P3 met à disposition une plateforme consacrée aux logiciels de simulation et d'analyse dédiée au détecteur ILD

La majorité des calculs sont effectués sur la grille

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie JJC A

JJC Angers, 2010

/ 27

- Génération des événements (groupe d'optimisation de l'ILD)
- Récupération des fichies LCIO et traitement des données avec la grille
- Pré-sélections
- Sélection

(日) (同) (三) (三)

Introduction 0000 Paramètres de simulation La masse de Higgs

Detecteur ILD_00:

- $M_H = 120 \ GeV$
- $\sqrt{s} = 250 \ GeV$
- e^+ polarisation = 30%
- e^- polarisation = 80%

• $L = 250 \ fb^{-1}$

Section	Polarisation du faisceau		
efficace (fb)	e ⁺ e ⁻ (30%, 80%)		
Processus	(+, -)	(-,+)	
$ZH\toeeX$	12,55	8,43	
ee (Bhabha)	17,30 10 ⁶	17,28 10 ⁶	
$4f \rightarrow eeff$	4897	3793	

Bruit de fond provenant d'états finaux avec e^+e^- :

- Diffusion Bhabha
- Evénements du modèle standard avec 4 fermions dont e⁺e⁻

Identification du boson Z:

- Sélection de la paire e^+e^- qui reconstruit au mieux la masse du Z: $M_{Z_{reconstruit}} = M_Z \pm 10 \ GeV$
- Leptons centraux : $|cos(\theta)| < 0,9$
- Charges opposées

- Pré-sélection : Coupure sur le nombre d'objets reconstruits N_{objets} > 21
- La mesure de l'efficacité de la coupure est limitée par le nombre d'événements Monte-Carlo
- Le bruit de fond Bhabha pourra être contrôlé

(+ , -)	$L_{simulated}(fb^{-1})$	$N_{objets} > 21$	$N_{objets} > 21(250 fb^{-1})$
eeX (Signal)	10 000	55 847	1396
eeX (Bhabha)	0,5123	1	487

Le bruit de fond Bhabha sera négligé par la suite

Youssef Khoulaki, Lab. ILCP

La masse de Higgs & la reconstruction digitale de l'énergie

JJC Angers, 2010

10 / 27

Sélection des évenements (Coupures sur des variables cinématiques)

- ∢ ≣ →

La masse de Higgs 00000000000

Sélection des évenements (Résultats)

La masse de Higgs & la reconstruction digitale de l'énergie Youssef Khoulaki, Lab. ILCP JJC Angers, 2010 12 / 27 La masse de Higgs La méthode digitale 00000000000

Reconstruction de la masse de recul

Mesure du signal (Gaussian Peak Exponential Tail):

$$f(x; \alpha, n, \bar{x}, \sigma) = N \begin{cases} e^{-\frac{(x-\bar{x})^2}{2\sigma^2}} & : pour \ \frac{x-\bar{x}}{\sigma} \leq \alpha \\ \beta \cdot e^{-\frac{(x-\bar{x})^2}{2\sigma^2}} + (1-\beta) \cdot e^{\frac{\alpha^2}{2}} \cdot e^{-(x-\bar{x}) \cdot \frac{\alpha}{\sigma}} & : pour \ \frac{x-\bar{x}}{\sigma} > \alpha \end{cases}$$

Mesure du bruit de fond: modélisé par un polynôme de degré 6

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie

JJC Angers, 2010 13 / 27

Sac

ntroduction	La masse de Higgs	La méthode digitale
	000000000	
Reconstruction de la masse de recul		

	e^+e^- mode de polarisation (30%, 80%)			
	(+,-)		(-,+)	
	Signal seul	Signal + Bdf	Signal seul	Signal + Bdf
M_H (GeV)	120.486 ± 0.073	120.368 ± 0.100	120.507 ± 0.085	120.445 ± 0.110
$\sigma~({\rm GeV})$	0.638 ± 0.051	0.575 ± 0.083	0.654 ± 0.062	0.592 ± 0.100

э.

ም.

Mesure de la masse du boson de Higgs dans le canal: $e^+e^- \rightarrow 7 H \rightarrow e^+e^- + X$

Illustration du potentiel de l'ILC pour des mesures de précision

- Effet du bruit de fond: détérioration de la précision sur M_H
- Pour $M_H = 120$ GeV:
 - $M_{Rec} = 120.368 \pm 0.100$ GeV (polarisation (+,-))

• $M_{Rec} = 120.445 \pm 0.110 \text{ GeV} \text{ (polarisation (-,+))}$

•
$$e^+e^- \rightarrow Z H \rightarrow \mu^+ \mu^- + X$$
 (Perspective)

Pour plus d'information:

Measurement of the Higgs mass via the channel: $e^+e^- \rightarrow Z H \rightarrow e^+e^- + X$: D. Benchekroun, J-Y. Hostachy, Y. Khoulaki and L. Morin LCWS 2010, Beijing - China http://arxiv.org/abs/1006.1241

Introduction La masse de Higgs 0000 000000000 Test-Beam: DESY & CERN

3

(日) (周) (三) (三)

Introduction 0000	La masse de Higgs 000000000	La méthode digitale
Reconstruction de l'énergie		

Données des tests en faisceau:

- DESY 2006: $1 \rightarrow 6 \text{ GeV}$
- CERN 2006: 6 \rightarrow 45 GeV

$$E_{Ana} = \alpha(\beta_1 E_1 + \beta_2 E_2 + \beta_3 E_3) \tag{1}$$

$$E_{Dig} = \alpha'(\beta_1' N_1 + \beta_2' N_2 + \beta_3' N_3)$$
⁽²⁾

Avec:

E_i : Energie déposée dans le compartiment i (=1, 2, 3) *N_i* : Nombre de cellules touchées dans le compartiment i

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie JJC Angers, 2010 17 / 27

DESY-DATA: Méthode analogique vs. méthode Digitale

• Comportement linéaire à basse énergie

• Digitale: alternative à très basse énergie

Youssef Khoulaki, Lab. ILCP

La masse de Higgs & la reconstruction digitale de l'énergie

JJC Angers, 2010

18 / 27

3 → 4 3

Réinitialisation des seuils

CALICE RAW2CALOHIT package

... _signalThreshold = 0.;

Nouvelles reconstruction DESY DATA

1 GeV : / grid / calice / users / khoulaki / tb - desy / My. REC. without.threshold / Run230098.rec.kh.000.slcio 2 GeV : / grid / calice / users / khoulaki / tb - desy / My. REC. without.threshold / Run230099.rec.kh.000.slcio 3 GeV : / grid / calice / users / khoulaki / tb - desy / My. REC. without.threshold / Run230100.rec.kh.000.slcio 4 GeV : / grid / calice / users / khoulaki / tb - desy / My. REC. without.threshold / Run230101.rec.kh.000.slcio 5 GeV : / grid / calice / users / khoulaki / tb - desy / My. REC. without.threshold / Run230104.rec.kh.000.slcio 5 GeV : / grid / calice / users / khoulaki / tb - desy / My. REC. without.threshold / Run230104.rec.kh.000.slcio 6 GeV : / grid / calice / users / khoulaki / tb - desy / My. REC. without.threshold / Run230248.rec.kh.000.slcio

Les seuils sont définis lors de l'analyse

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie JJC Angers, 2010 19 / 27

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie JJC Angers, 2010 20 / 27

< □ > < ---->

∃ → э

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie э

• $E < E_{cross}$: résolution calculée par la méthode digitale • E > E_{cross}: résolution calculée par la méthode analogique

	Methodes	a (%)	c (%)
$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E(GeV)}} \oplus C$	Ana.	16,31	1,62
	Ana. + Dig. (0,4 MIP)	15,89	1,62

La méthode digitale 0000000000000

Nombre des cellules touchées vs. Energies

э

< - **1** →

Youssef Khoulaki, Lab. ILCP

La masse de Higgs & la reconstruction digitale de l'énergie

JJC Angers, 2010 23 / 27

La méthode digitale 0000000000000

Comparaison DATA-MC: Résolution en énergie

Résolution en énergie vs. Seuils

Youssef Khoulaki, Lab. ILCP

La masse de Higgs & la reconstruction digitale de l'énergie

JJC Angers, 2010 24 / 27

э

Deux méthodes pour la reconstruction de l'énergie:
analogique (meilleure pour E > 3 GeV)
digitale (alternative à très basse énergie)

L'utilisation de la méthode digitale pourrait donc être de grand intérêt à basse énergie

Youssef Khoulaki, Lab. ILCP La masse de Higgs & la reconstruction digitale de l'énergie JJC Angers, 2010 25 / 27

Backup slides

◆□> ◆舂> ◆注> ◆注> 注:

$E_{hit} < 0.4 MIP$?

◆□▶ ◆□▶ ◆臣