

R&D for the EASIER experiment

Silvia Gambetta

Università degli studi di Genova and INFN Genova, LPNHE Paris

Angers, 26-11-2010

Outline

- The EASIER project
- The prototype detector
- Noise measurements
- Expected signal
- Future plans

The collaboration:

J. Aublin, M. Avenier, C. Bérat, X. Bertou, P. Billoir, C. Bonifazi,
J. Chauvin, O. Deligny, Silvia Gambetta, P. Ghia, H. Lebbolo,
D. Lebrun, I. Lhenry-Yvon, A. Letessier-Selvon, C. Macolino, I. Mariş,
F. Montanet, M. Münchmeyer, R. Randriatoamanana, P. Stassi, A. Stutz

Institutions:

CAB, LPNHE, IPNO, LPSC, UFRJ

Auger results

- GZK: mass composition important
- < X_{max} >: composition shows a trend towards heavy nuclei
- Data up to March 2009: 38% correlate

EASIER's goal

- Improve particle indentification of UHECR
- Measure UHECR composition at higher energies
- Measure hadronic cross section at higher energies
- Constraints and parametrization of interaction models

The detector

Extensive Air Shower Identification using Electron Radiometer

- Integrated radio receiver
- EM component of the shower
- Power trace
- Local DAQ

Detection principle

- Detection of radio emission of the EM cascade
- Two possible bands: VHF (10-100 MHz) and MW (1-10 GHz)
- Trigger and timing via tank DAQ

- Signal proportional to the EM energy
- Time shape related to the cascade evolution and X_{max}
- Muonic signal in the tank by substraction

 $\approx 100\%$ duty cycle telescope with the coverage of a surface detector, integrated in the array \$6/26\$

Radio physics

Signal: geosynchrotron radiation

$$\mathbf{E} \left[\mu \mathrm{V/m}\right] = 178 \frac{E_0}{10^{17} \,\mathrm{eV}} (-\mathbf{v} \times \mathbf{B}) \cos \theta \exp \left(\frac{-d}{D_0(\theta)}\right)$$

State of art in the detection:

- Collimated radiation
- Main experiments: LOPES, CODALEMA, AERA
- Large areas at low cost
- Problems in trigger setup
- Actual detectors few hundred meters apart

External trigger can overcome these difficulties

Plan of noise measurements

Measurements taken in Orsay (Paris) at the Auger prototype tank:

- Environmental noise
- Constant noise from the tank electronics
- Noise from PMTs signal

Environmental noise

Measurements with the antenna in different positions

• Noise level on top of the tank: $-128 \, dBm/Hz$

 $\bullet\,$ Difference between the spectra: $(1.17\pm0.17)\,dB$

Antenna lobes not influenced by the position with respect to the tank

Constant noise from the tank

• No emission visible from the PMTs

• Noise at 40 MHz from the UB

Noise from PMTs

Antenna next to PMT

- 2000 traces averaged
- Baseline: averaging before the trigger
- Peak: considering 1 µs and 100 ns sliding windows
- Evaluating the correspondig electric field

Antenna on top of the tank is a good configuration Noise from PMTs for $1 \mu s$ window: 0.19 dB Noise from PMTs for 100 ns window: 0.28 dB

Noise from PMTs

Antenna next to PMT

0.3

- 2000 traces averaged
- Baseline: averaging before the trigger
- Peak: considering 1 µs and 100 ns sliding windows
- Evaluating the correspondig electric field

Antenna on top of the tank is a good configuration Noise from PMTs for $1 \mu s$ window: 0.19 dB Noise from PMTs for 100 ns window: 0.28 dB

0.05

t-t_{trigger} [µs]

Noise from PMTs

Antenna next to PMT

- 2000 traces averaged
- Baseline: averaging before the trigger
- Peak: considering 1 µs and 100 ns sliding windows
- Evaluating the correspondig electric field

Antenna on top of the tank is a good configuration Noise from PMTs for $1 \mu s$ window: 0.19 dB Noise from PMTs for 100 ns window: 0.28 dB

Sensitivity

Chosen configuration: antenna on top of the tank

- Distribution of the average power measured in a chosen time window for 2000 traces
- The sensitivity is the variance of the distribution
- Two parameters computed for two windows: $1\,\mu s$ and $100\,ns$

Measurement	σ_W [nW]	$\sigma_E \; [\mu V/M]$
1μ s baseline	1.50	3.90
100 ns baseline	3.48	9.07
1μ s peak	1.71	4.36
100 ns peak	3.73	9.39

Worst case: signal around the peak within a 100 ns window $\Rightarrow 1.45\,\mu{\rm V/m/MHz}$

Expected trigger rate

Event number expected in the Vieira hexagon:

- SD events from May to August 2010
- Corresponding electric field higher than sensitivity

5 events/day in our hexagone

VHF setup: acquisition chain

FAT dipole antenna, LNA (CODALEMA) + EASIER board + Auger UB

- Filters (30-88 MHz)
- Power detector (AD8310)
- Inverter

The Molecular Bremsstralhung Radiation

Gorham et al. "Observation of microwave continuum emission from air shower plasmas", Phys.Rev.D78,2008.

- EAS particles dissipate their energy through ionization
- A plasma of $T_e \simeq 10^{4-5}\,{
 m K}$ is created
 - Secondary electrons excite $N_2 \Rightarrow$ fluorescence radiation
 - Secondary electrons themselves produce their own emission like bremsstralhung in field of neutral molecules: EMISSION IN THE MICROWAVE RANGE

Characteristics:

- Isotropic radiation ⇒ FD like detector
- Around 100% duty cycle
- Minimal atmospheric attenuation (even with clouds and rain)

State of art:

- Observed in laboratory at accelerator experiment
- Never observed in field
- Main experiments: AMBER, MIDAS, CROME

Slave trigger helps improving problem of detectability due to SNR

Scaling to air showers

Expected intensity:

$$I_{exp} = I_{lab} \cdot \Gamma \cdot \rho \left(\frac{d}{R}\right)^2$$

- $I_{lab} = 4 \cdot 10^{-16} \, \mathrm{W/m^2/Hz}$, reference shower: 0.34 EeV
- R distance to the observed axis
- ρ ratio of electron density at a shower altitude to sea level electron density in reference shower
- Γ time scaling factor, ratio of a trial shower lenght per e-folding time to observed reference shower lenght
- Yield ${=}2\cdot10^{-18}\,\mathrm{W/m^2/Hz}$

Signal calculation

Scaling of the accelerator data from the Gorham paper taking into account the shower development and antenna FOV. Expected intensity:

- Coherent emission $I \propto N_e^2$
- Uncoherent emission $I \propto N_e$

Traces expected at 900 m, for $\theta=$ 38 $^{\rm o}$

Noise

Antenna temperature is an important parameter

Experimental setup

Digital Ready Expanded C Band LNBF

Input Frequency:

Output Frequency: Noise Figure: Gain: Polarity: LO Frequency: Image Rejection Switch Voltage Vertical: Horizontal: Output Impedance: Output Connector:

3.4-4.2GHz 950-1750MHz 13K 70dB 1 (Hor or Ver) 5150MHz 45dB Min

14V DC 18V DC 750hms

Private Label Available **F**-Female

WS International Global Satellite Distribution 1200 Cobb Parkway North ~ Suite 100B ~ Marietta, GA 30062-2418 USA Tel: +770 420 5272 ~ Fax: +770 420 5350 Email: sales@wsidigital.com ~ Web: www.wsidigital.com

Commercial horn antenna DMX 242:

- 3.4 to 4.2 GHz
- output 0.95 to 1.75 GHz
- Gain 70 dB (announced)
- Temperature 13 K (announced)

Power Detector AD8318

Antenna's data sheet does not exist \Rightarrow we have to characterize our receiver

Antenna characterization

Measurements done in anechoic chamber @ Valence

- Source at 3.4-4.18 GHz
- Theta and Phi variable

- 4.18 GHz, θ variable, $\phi = 0$
- Gain in our band
- Back lobes present \Rightarrow influence on the system temperature

Noise measurements in Paris

21/26

Measurements in Malargüe

Event rate

- SD events detected in 10 months in 2010
- Maximum signal above our noise

Event rate

rate: 0.6 - 1.6 events/month

Analysis tools

Study of shower universality to recover the muonic signal from the electromagnetic signal detected by EASIER

 ${\cal S}_{\mu}$ by substraction of the ${\cal S}_{em}$ measured by EASIER

Anti-correlation between X_{max} and S_{μ} from simulated showers

Study of the recovery of muonic signal from Golden Hybrids events

Conclusions

VHF band

- Antenna chosen and tested
- Noise from the tank evaluated
- Acquisition chain tested
- Trigger rate estimated:
 - 5 events/day

MW band:

- Antenna chosen and tested
- Partial charaterization of the receiver done
- Acquisition chain do be validated
- Trigger rate estimated:
 - $2 \; events/month$

Deployment on the first hexagone foreseen at the beginning of February!