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Auger results

GZK: mass composition important

< Xmax >: composition shows a
trend towards heavy nuclei

Data up to March 2009: 38%
correlate
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EASIER’s goal

Improve particle indentification of UHECR
Measure UHECR composition at higher energies
Measure hadronic cross section at higher energies
Constraints and parametrization of interaction models
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The detector

Extensive Air Shower Identification using Electron Radiometer

Integrated radio receiver

EM component of the shower

Power trace

Local DAQ
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Detection principle

Detection of radio emission of the EM cascade
Two possible bands: VHF (10-100 MHz) and MW (1-10 GHz)
Trigger and timing via tank DAQ

Signal proportional to the EM energy
Time shape related to the cascade evolution and Xmax

Muonic signal in the tank by substraction

≈ 100% duty cycle telescope with the coverage of a surface detector,
integrated in the array
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Radio physics

Signal: geosynchrotron radiation

E [µV/m] = 178
E0

1017 eV
(−v× B) cos θ exp

(
−d

D0(θ)

)
State of art in the detection:

Collimated radiation

Main experiments: LOPES, CODALEMA, AERA

Large areas at low cost

Problems in trigger setup

Actual detectors few hundred meters apart

External trigger can overcome these difficulties
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Plan of noise measurements

Measurements taken in Orsay (Paris) at the Auger prototype tank:

Environmental noise

Constant noise from the tank electronics

Noise from PMTs signal
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Environmental noise

Measurements with the antenna in different positions
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Noise level on top of the tank: -128 dBm/Hz

Difference between the spectra: (1.17± 0.17) dB

Antenna lobes not influenced by the position with respect to the tank
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Constant noise from the tank
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Noise from PMTs
Antenna next to PMT
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2000 traces averaged

Baseline: averaging
before the trigger

Peak: considering 1µs
and 100 ns sliding
windows

Evaluating the
correspondig electric field

Antenna on top of the tank is
a good configuration
Noise from PMTs for 1µs
window: 0.19 dB
Noise from PMTs for 100 ns
window: 0.28 dB
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Sensitivity

Chosen configuration: antenna on top of the tank

Distribution of the average power measured in a chosen time
window for 2000 traces

The sensitivity is the variance of the distribution

Two parameters computed for two windows: 1µs and 100 ns

Measurement σW [nW] σE [µV/M]
1µs baseline 1.50 3.90

100 ns baseline 3.48 9.07
1µs peak 1.71 4.36

100 ns peak 3.73 9.39

Worst case: signal around the peak within a 100 ns window
⇒ 1.45µV/m/MHz
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Expected trigger rate

Event number expected in the Vieira hexagon:

SD events from May to August 2010

Corresponding electric field higher than sensitivity

number of tanks with radio signal above noise
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VHF setup: acquisition chain

FAT dipole antenna, LNA (CODALEMA) + EASIER board + Auger UB

Filters (30-88 MHz)

Power detector (AD8310)

Inverter
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The Molecular Bremsstralhung Radiation

Gorham et al. ”Observation of microwave continuum emission from air
shower plasmas”, Phys.Rev.D78,2008.

EAS particles dissipate their energy through ionization

A plasma of Te ' 104−5 K is created

Secondary electrons excite N2 ⇒ fluorescence radiation
Secondary electrons themselves produce their own emission like
bremsstralhung in field of neutral molecules: EMISSION IN THE
MICROWAVE RANGE

Characteristics:

Isotropic radiation ⇒ FD like
detector

Around 100% duty cycle

Minimal atmospheric attenuation
(even with clouds and rain)

State of art:

Observed in laboratory at
accelerator experiment

Never observed in field

Main experiments: AMBER,
MIDAS, CROME

Slave trigger helps improving problem of detectability due to SNR
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Scaling to air showers

Expected intensity:

Iexp = Ilab · Γ · ρ
(

d

R

)2

Ilab = 4 · 10−16 W/m2/Hz, reference shower: 0.34 EeV

R distance to the observed axis

ρ ratio of electron density at a shower altitude to sea level electron
density in reference shower

Γ time scaling factor, ratio of a trial shower lenght per e-folding time
to observed reference shower lenght

Yield =2 · 10−18 W/m2/Hz

Gorham et al., Table 2
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Signal calculation

Scaling of the accelerator data from the Gorham paper taking into
account the shower development and antenna FOV. Expected intensity:

Coherent emission I ∝ N2
e

Uncoherent emission I ∝ Ne

Traces expected at 900 m, for θ = 38 o
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Noise
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Sun contribution (4 GHz)

Wactivesun = 1.4 · 10−19 W
m2Hz

Other contributions
(overestimated)

Wother = 1 · 10−20 W
m2Hz

P = Aeff

(
Wother +

ΩSun

ΩA
WSun

)
∆f + kBTA∆f

Antenna temperature is an important parameter
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Experimental setup

Commercial horn antenna DMX 242:

3.4 to 4.2 GHz

output 0.95 to 1.75 GHz

Gain 70 dB (announced)

Temperature 13 K (announced)

Power Detector AD8318

Antenna’s data sheet does not exist
⇒ we have to characterize our receiver
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Antenna characterization

Measurements done in anechoic chamber @ Valence

Source at 3.4-4.18 GHz

Theta and Phi variable

4.18 GHz, θ variable, φ = 0

Gain in our band

Back lobes present ⇒ influence on the
system temperature
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Noise measurements in Paris
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Measurements in Malargüe
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Event rate

SD events detected in 10 months in 2010

Maximum signal above our noise
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Event rate
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rate: 0.6 - 1.6 events/month
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Analysis tools

Study of shower universality to recover the muonic signal from the
electromagnetic signal detected by EASIER

 [VEM]GHz S - a*S
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 0.4± 0.6 RMS: 6.2 ±Fe:  mean = 6.6 

Sµ by substraction of the Sem

measured by EASIER
Anti-correlation between Xmax and Sµ

from simulated showers

Study of the recovery of muonic signal from Golden Hybrids events
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Conclusions

VHF band

Antenna chosen and tested

Noise from the tank evaluated

Acquisition chain tested

Trigger rate estimated:

5 events/day

MW band:

Antenna chosen and tested

Partial charaterization of the
receiver done

Acquisition chain do be validated

Trigger rate estimated:

2 events/month

Deployment on the first hexagone foreseen at the beginning of February!
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