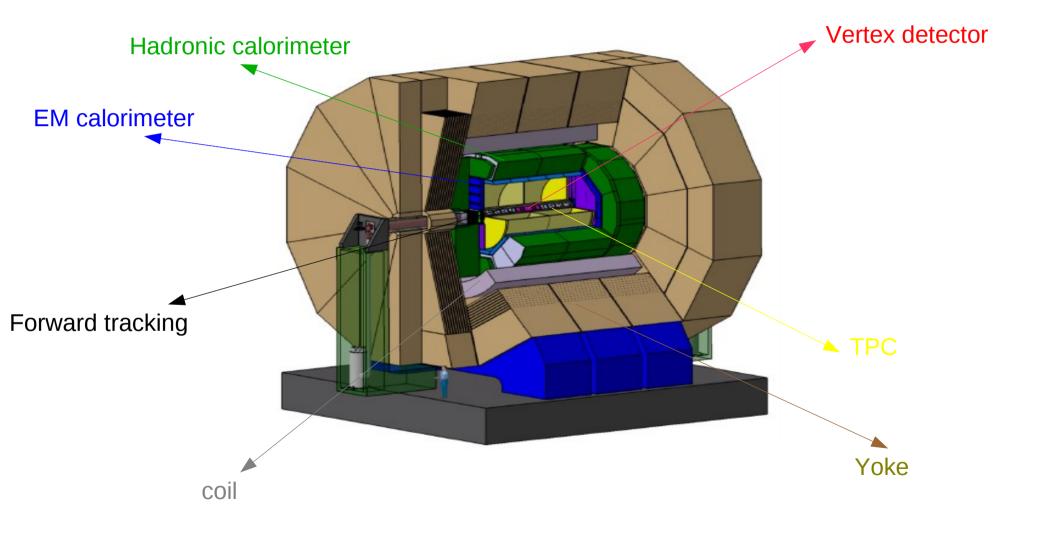


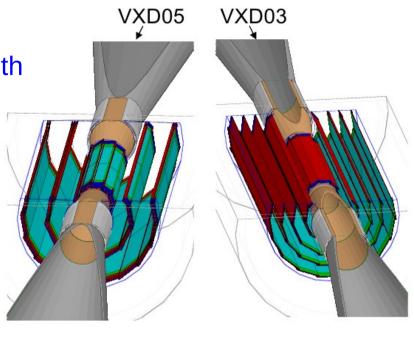
ILD vertex detector & CMOS sensors studies

Yorgos Voutsinas on behalf of IPHC Strasbourg


- International Linear Collider
- ILD vertex detector
- CMOS sensors
 - Beam test data analysis
 - CMOS based vertex detector for ILC
- Vertex detector optimisation studies

International Linear Collider

- Future linear electron positron collider
 - > $\sqrt{s} = 500 \text{GeV}$, option for 1TeV
 - High precision machine
 - Well defined initial state
 - Clean final state
 - Triggerless
 - Complementary to LHC
- 2 general purpose detectors
 - > SiD
 - > ILD


ILD

ILD vertex detector

- 2 main candidate geometries for ILD VXD
 - VXD05: with 3 double layers equipped with silicon pixel sensors
 - VXD03: 5 single layers

	VXD03	VXD05
layers	5	3 x 2
sensitive length (mm)	62.5	125
sensitive width (mm)	11-15-22	11-22
radii (mm)	15-60	16–60
sensitive thickness (μm/ladder)	50	50
graphite insensitive thickness (μm/ladder)	134	134

Beam induced background

- Background induced due to beam-beam interaction
 - > When the beams approaching, exert force to each other
 - Particle's trajectories are bent beam spot is reduced (pinch effect)
 - Luminosity enhancement by a factor ~ 2
 - Emission of hard beamstrahlung y
 - beam energy degradation
 - * A part of γ is converted to low energy e^+e^- pairs (~10⁵ per BX)
- Pairs main source of background to ILC detectors
- Vast majority of pairs are low momentum particles emitted at the very forward direction

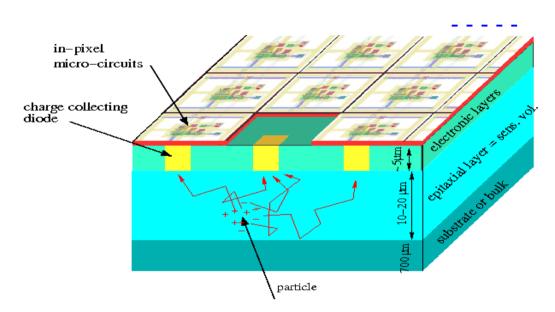
layer	VTX-DL	VTX-SL
1	4.4 ± 0.5	5.3 ± 0.5
2	2.9 ± 0.4	$6.0\pm0.5\times\!10^{-1}$
3	$1.54\pm0.14\times\!10^{-1}$	$1.9\pm0.13\times 10^{-1}$
4	$1.34\pm0.11\times\!10^{-1}$	$6.9\pm0.6\times\!10^{-2}$
5	$3.2 \pm 0.7 \times 10^{-2}$	$3.1 \pm 0.4 \times 10^{-2}$
6	$2.7\pm0.5\times\!10^{-2}$	

Hit densities from pair background / BX $\rm cm^2$ from R. DeMasi ILC note

5

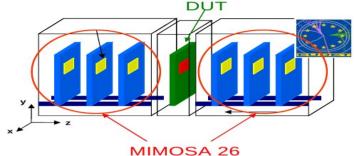
ILD vertex detector requirements

• Figure of merit Impact parameter resolution

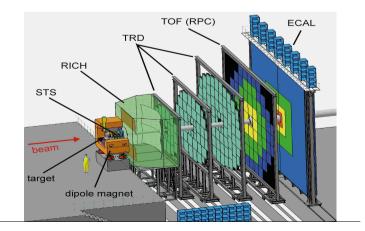

 $\sigma_{\rm IP}$ = a \oplus b/psin^{3/2} θ

 $a \leq 5\mu m, b \leq 10\mu m \text{ GeV}$

- > Sensor's single point resolution \sim 3µm
- > Material budget > $0.2\%X_0$ per layer
- Power dissipation < 100W</p>
- Running constraints mostly defined from beam induced e⁻e⁺ pair background
 - Determines pixel occupancy
 - Require a relative fast readout
 - → 25µs for inner layers, 100µs for outer
 - Moderate radiation tolerance
 - → 0.3MRad/y, few 10¹¹n_{eq}/cm² y
- CMOS sensors is a promising candidate technology


CMOS sensors principle of operation – main features

- CMOS sensors: Appropriate technology for high precision tracking devices like vertex detectors and beam telescopes
- Signal created by mips: ~80e⁻-h pairs/µm
- Electrons diffuse thermally at epi layer collected by an Nwell-p-epi junction
- Advantages
 - High granularity O(10µm)
 - Low material budget (<50µm)
 - Signal processing on substrate
 - Cost
- Limitations
 - Small signal O(1000e⁻) calls for low noise electronics
 - Use of only NMOS transistors for on pixel signal processing
 - Undepleted sensitive volume \rightarrow non ionising radiation tolerance, charge collection



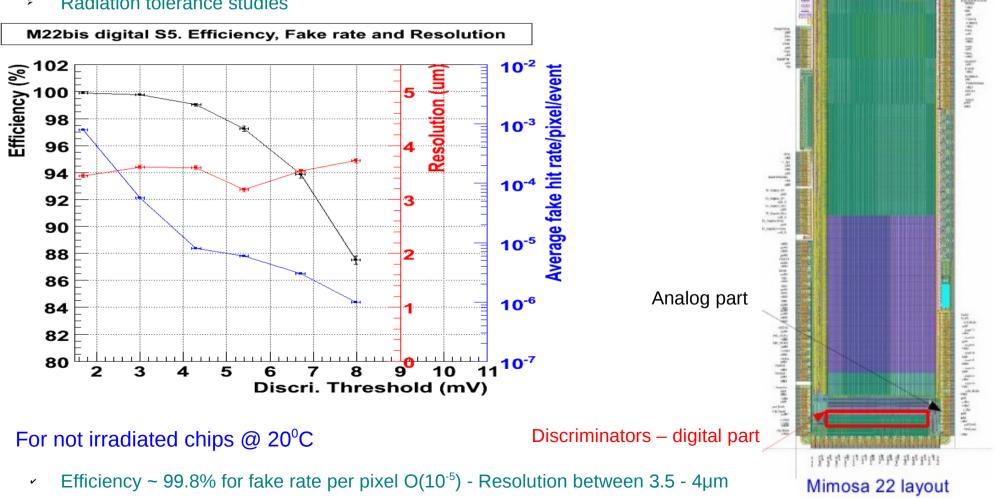
CMOS sensors HEP applications

- MIMOSA26 first real scale digital sensor of this series with on chip data sparsification
- MIMOSA 26 equips reference planes of EUDET beam telesco
 - EUDET FP6 project infrastructure for ILC detectors R&D
 - Commissioned at CERN SPS at 2009
 - Extrapolated resolution ~ 2µm
 - > Upto 10⁶ particles/cm²/s beam intensity
- Baseline sensor for heavy ion collider experiments
 - STAR HFT
 - 1M pixels
 - 200µs integration time
 - First data expected at 2013
 - CBM MVD
 - More severe radiation tolerance requirements
 - Double sided ro (20µs int. time)
 - Prototyping 2012
- ILD vertex detector (option)
- ALICE upgrade (option)

CMOS sensors test beam data analysis

- Main goals of a beam test
 - Analog part: measure charge collection, noise, signal/noise ratio
 - Digital part: calculate efficiency, resolution, fake hit rate, cluster multiplicity
 - Radiation tolerance studies with sensors irradiated with ionising or/and non ionising radiation
- Use of a beam telescope for track reconstruction

- Following results are from beam tests at CERN SPS
- 120GeV pion beam multiple scattering negligible

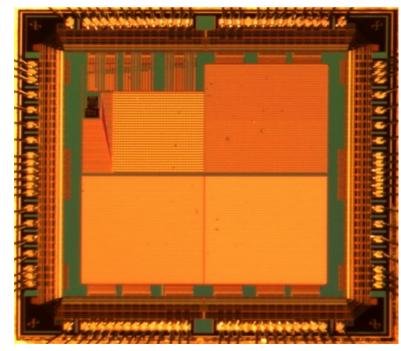

Yorgos Voutsinas

9

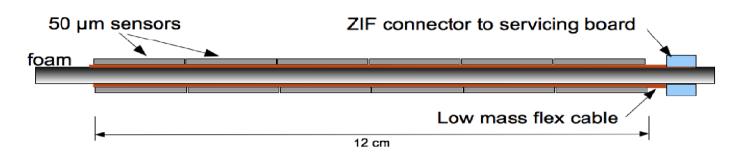
MIMOSA 22/22bis beam test analysis

- Intermediate digital sensor for EUDET beam telescope
 - Column parallel readout mode at a real scale sensor ۶
 - Optimization of pixel architecture for EUDET BT sensor ۶
 - Radiation tolerance studies ۶

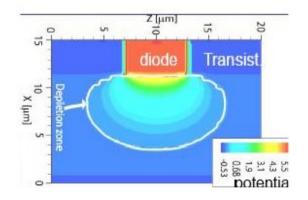
•



Reference pixel design exhibits satisfactory results in both sensors / EUDET


Mimosa 22bis non irr.	2.48M
Mimosa 22bis 150krad(20 & 35°C)	2.17M
Mimosa 22bis 300krad	660k
Mimosa 22 10 ¹² n _{eq}	1M

MIMOSA 24 beam test analysis


- Exploration of fabrication processes is an important R&D line
- Epitaxial layer thickness often not known reliably
- MIMOSA 24 motivation: exploration of XFAB 0.35µm process
- Sensor description
 - Analog sensor with 8 different pixel designs
- Main objective
 - Comparison with MIMOSA9
 - Similar sensor but fabricated in a different process
- Results
 - Indicate similar performance with MIMOSA 9

Towards a CMOS based vertex detector for ILD (1)

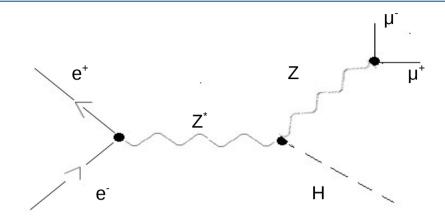
- Sensor integration studies
 - PLUME project collaboration of Bristol DESY Oxford Strasbourg
 - Double sided ladder equipped with 2x6 thinned down to 50 µm MIMOSA-26 (material budget 2012 target: 0.3 % X₀)
 - Explore feasibility, performances and added value of double-sided ladders
- High resistivity epitaxial layers
 - Partially depleted sensitive volume
 - More tolerant to non-ionising radiation
 - Faster and enhanced charge collection

A.Dorokhov high res. simulation studies

Towards a CMOS based vertex detector for ILD (2)

- Double layers geometry option
 - Inner superlayer
 - Binary sensors
 - First layer ~ 15µm pitch
 - High spatial resolution ~ 3µm
 - Second layer ~ 60µm pitch
 - ✓ Column parallel r/o → r/o time proportional to # pixels/column
 - Time stamping
 - Outer Layers
 - Less severe requirements @ readout speed
 - Pixel pitch ~ 35µm
 - 4-5 bits ADC
 - Single point resolution < 3.5µm
 - Aim mainly for low power dissipation

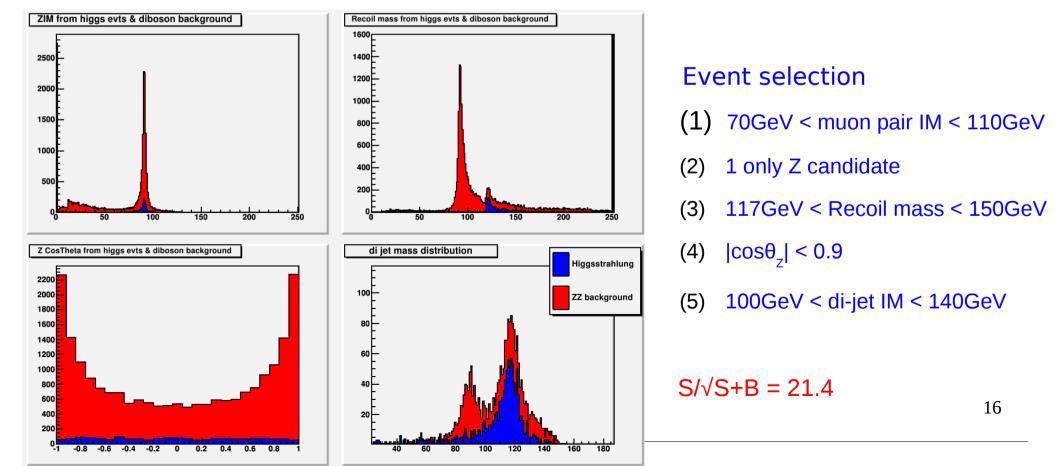
15µm pitch → r.o. time ~ 35-40µs
60µm pitch → r.o. time < 10µs
Matrix for time stamp
Matrix for resolution


Depleted epi layer \rightarrow allows for larger sensing diode spacing

ILD vertex detector optimisation

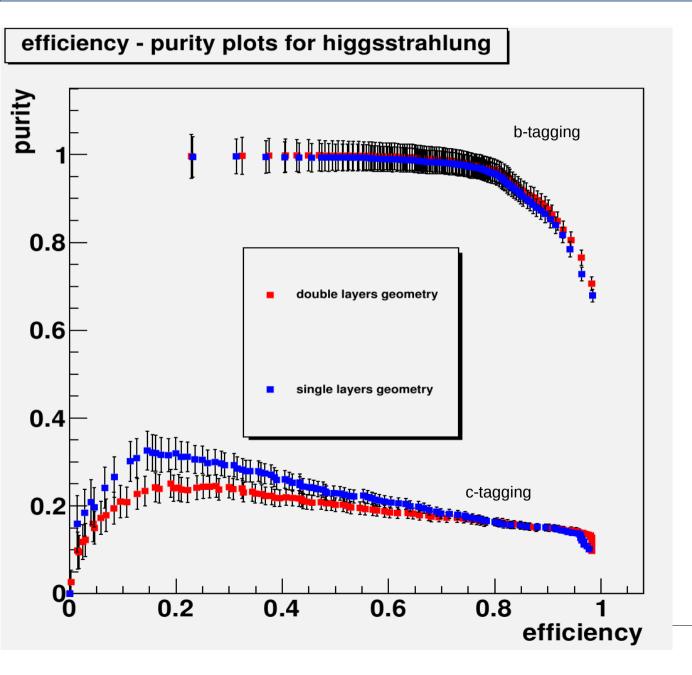
- ILD VXD goals
 - High precision flavour tagging
 - Track reconstruction (especially for low momentum tracks)
- Crucial for
 - Extraction of branching ratios study of Higgs couplings
 - Vertex charge reconstruction
- Optimisation will be mostly based on
 - Performance of the 2 main candidate VXD geometries on
 - Heavy flavour tagging performance
 - Extraction of Higgs hadronic branching ratios
 - Reconstruction of vertex charge
 - Study of VXD performance in the presence of pair beam background
- * No specific sensor technology assumed in these studies

Physics channel – event reconstruction


- Higgsstrahlung channel $e^+e^- \rightarrow ZH \rightarrow \mu^+\mu^-X$
 - → √s 250GeV
 - → M_H 120GeV

- → Higgs decaying according to its SM BR Z decaying to a pair of muons
 - Z recon. out of best candidate pair of muons
 - Rest of particles forced to 2 jets, using Durham jet clustering algorithm
- MC file from ILC data samples unpolarized beams, cross section ~ 7fb
- Simulated with Mokka (Geant4 based package)
 - Exchange VXD models: VXD03 (single layers) & VXD05 (double layers)
 - → s.p. Resolution assumed 2.8µm for all layers
- 250fb⁻¹ reconstructed with ilcsoft
- An independent sample of 500fb⁻¹ has been reconstructed to be used at the fit for the BR extraction

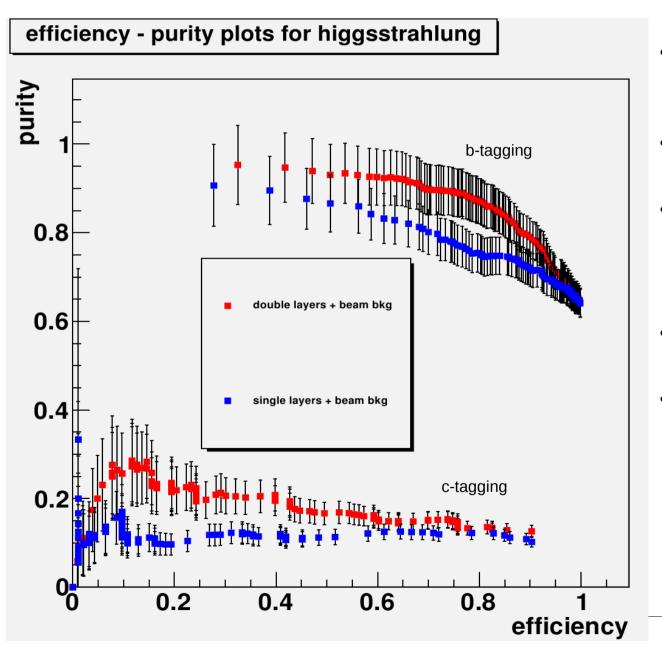
Physics background – event selection


- $e^+e^- \rightarrow ZZ \rightarrow \mu^+\mu^- qq_{bar}$, beam polarization 0, $\sigma = 79.0 fb$
 - > 250fb⁻¹ events reconstructed
- $e^+e^- \rightarrow WW \rightarrow \mu \nu_{\mu} qq_{bar}$, beam polarization 0, $\sigma = 2278.55 fb$
 - Out of 10k events reconstructed, 1event passes the cuts=> assumed negligible
- 2f-4f background negligible

Neural nets based flavour tagging

- Neural nets of LCFI group used for heavy flavour tagging
- Training sample: $Z \rightarrow qqbar @ \sqrt{s} = 91.2GeV$, 10k for each different VXD geometry
- 3 different sets of nets for b(c) tagging depending on vertex multiplicity in the jet
- Different set of discriminating variables used for 1 or >1 vertices found
 - Main variables when 1 vertex found inside the jet
 - > Impact parameter significance and P_{τ} of the 2 most significant tracks
 - > Joint probability that all tracks coming from primary vertex
 - When the jet has 2 or more vertices
 - Mostly use observables from the additional vertices
- Training uncertainties much smaller than statistical
- Neural nets checked for overtraining

Flavour tagging results - no beam bkg

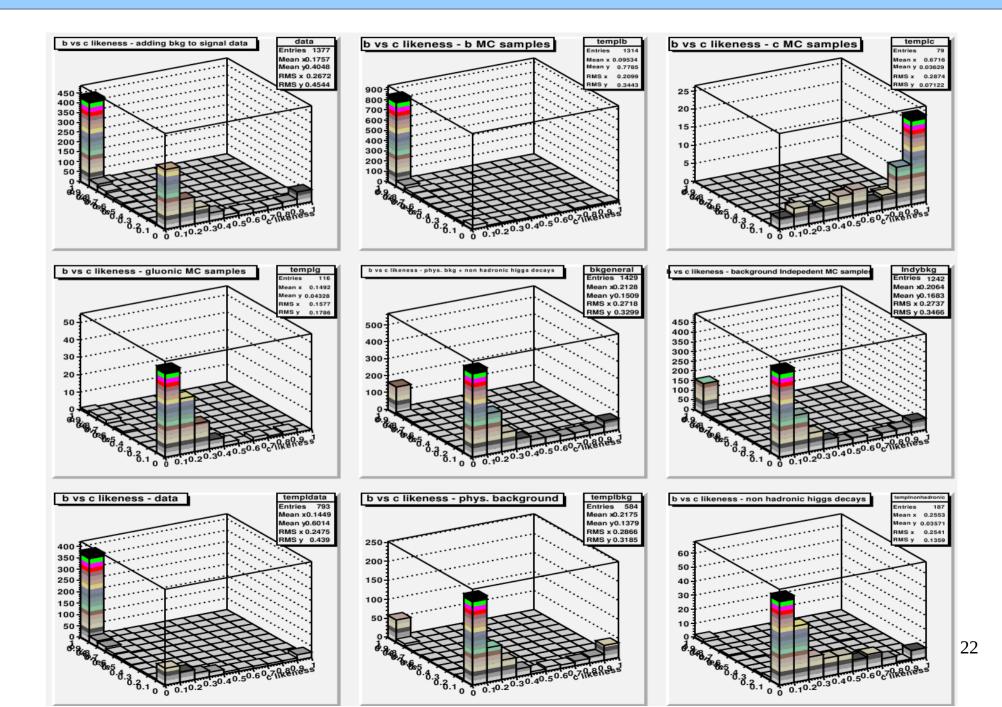

- 700fb⁻¹ of Higgsstrahlung analyzed
- No beam bkg superimposed
- Statistical errors shown in plot
- Nets uncertainties ~ 1% less than statisticals
- B tagging performance almost identical
- C tagging performance : single layer option has a region for low and moderate efficiency with higher purity
 - Mainly due to smaller distance from IP

Beam background

- Random noise clusters superimposed according to expected hit density
- Number of BXs superimposed depending to readout time of each VXD layer
 - Pixel occupancy
 - Combinatorial background
 - → Fake tracks

layer	Readout (µs) - (#BXs superimposed)	
	SL	DL
0	25 (68)	25 (68)
1	50 (136)	25 (68)
2	100 (272)	100 (272)
3	100 (272)	100 (272)
4	100 (272)	100 (272)
5		100 (272)

Flavour tagging with beamstrahlung



- Similar study but now with salt n' pepper background superimposed according to layer's r.o. time
- ~250fb⁻¹ of Higgsstrahlung analyzed
- In order to gain processing time silicon tracking modified
 - Negligible effect on the performance
- Better performance for double layers geometry
- Maybe consequence of tracking
 - ~1k silicon tracks/evt for DL geometry
 - ~5k silicon tracks /evt for SL geometry
 - ~ 30/evt for both geometries w/o beam background

Higgs branching ratios extraction

- Based on ILD Letter Of Intent $ZH \rightarrow IIqq$ branching ratios analysis
 - Repeat these studies for different VXD geometries
 - Include beam background
- b(c) likeness: event wise variable
 - → Likeness = x1x2/(x1x2 + (1-x1)(1-x2)), where x1,2 are the outputs of the neural nets for first and second jet respectively
- Previous studies shown that a cut based extraction of the flavours does not yield the best sensitivity
- Use of template fitting technique
- There is no analytic distribution function so we use MC samples for the fitting
 - Split the initial sample to "data" and monte carlo
 - → Split the monte carlo sample to $H\rightarrow$ bb, $H\rightarrow$ cc, $H\rightarrow$ gg, non hadronic higgs decays + physics background
 - Create 2D templates with b-c likeness and fit the data by changing the normalisations of each sample – fix bkg sample factor to 1
 - Extract branching ratios from the normalisation factors

MC templates for VXD05 - 500fb⁻¹

Fitting results

- BR(H \rightarrow xx) = r_{xx} x BR(H \rightarrow xx)_{SM}, where r_{xx} are the fit results for each hadronic decay channel (bb,cc,gg) these factors expected to be 1 for SM
- Comparison between relative errors for the candidate models especially for c-tagging

	Double layers	Single layers
r _{bb}	0.93 <u>+</u> 0.06	0.99 <u>+</u> 0.06
r _{cc}	0.93 <u>+</u> 0.59	0.86 <u>+</u> 0.54
r _{gg}	1.68 <u>+</u> 0.58	0.88 <u>+</u> 0.61

Fit Limitations

- Statistical fluctuation of MC samples
- Bins with very few events
- > Templates with the majority of events at only 1 bin
- Trying different fitting methods
 - > Finally choose χ^2 mostly due to low statistics of MC templates

$$X^{2} = \Sigma_{\text{bins}} \left(\mathsf{D}_{\text{bins}} - \left(\mathsf{N}_{\text{D}} / \mathsf{N}_{\text{MC}} \right) \Sigma_{\text{s}} r_{\text{s}} \mathsf{N}_{\text{s}}^{\text{bins}} \right)^{2} / \sigma_{\text{bins}}^{2}$$

× χ^2 (cope with limited data but not with very few evts @ 1 bin) – cut at bins with <5 entries ²³ Yorgos Voutsinas JJC 2010

Conclusions

- A vertex detector for ILC
 - Extract Higgs branching ratios measure Higgs couplings
 - Reconstruct vertex charge: forward backward assymetry
- Impact parameter resolution figure of merit
 - Excellent heavy flavour tagging
 - High tracking capabilities (especially for low P_{τ} tracks)
- Beamstrahlung is a big challenge for ILC VXD
- CMOS is a promising candidate technology for ILC VXD sensors
 - Exploit feature technology to trade of with the often conflicting ILD VXD requirements