Recherche de la Nouvelle Physique dans les désintégrations $B_s^0 \rightarrow J/\psi \phi$ avec le détecteur LHCb, auprès du LHC

Émilie Maurice

CPPM Aix-Marseille Université IN2P3 CNRS, France

26 Novembre 2010

Directeurs de thèse : Olivier Leroy et Renaud Le Gac Journées Jeunes Chercheurs 2010, Angers

É. Maurice CPPM

Mesure de ϕ_s avec LHCb

Sommaire

Cadre théorique

- 2 Cadre expérimental
- (3) Étude des acceptances angulaires de ${
 m B}^0_{
 m s}
 ightarrow {
 m J}\!/\!\psi\phi$
- Performances de l'étiquetage
- 5 Étude des interactions multiples
- 6 Conclusions et perspectives

Cadre théorique

Cadre théorique

La violation CP

Opérateurs

- C : la conjugaison de charge oppose les nombres quantiques additifs d'une particule
- P : la parité renverse la direction d'une particule
- Symétrie CP : change une particule en son anti-particule

Violation CP

- Observée dans les désintégrations faibles
- 3 types de violations CP dus aux :
 - Désintégrations
 - Oscillations
 - Interférences entre les oscillations et désintégrations

Cadre théorique

La matrice CKM

Le Modèle Standard rend compte de la violation CP via la matrice CKM : (Prix Nobel 2008)

- Matrice 3x3, unitaire
- 3 paramètres réels, 1 phase complexe
- Probabilité qu'un quark q se transforme en quark q'

$$\mathbf{V}_{\mathrm{CKM}} = \left(\begin{array}{ccc} \mathbf{V}_{\mathrm{ud}} & \mathbf{V}_{\mathrm{us}} & \mathbf{V}_{\mathrm{ub}} \\ \mathbf{V}_{\mathrm{cd}} & \mathbf{V}_{\mathrm{cs}} & \mathbf{V}_{\mathrm{cb}} \\ \mathbf{V}_{\mathrm{td}} & \mathbf{V}_{\mathrm{ts}} & \mathbf{V}_{\mathrm{tb}} \end{array} \right)$$

• 6 triangles d'unitarité
$$\rightarrow$$
 triangle (sb)
 $\beta_{s} = \arg \left(\frac{-V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}} \right)$

• Le Modèle Standard prédit : $-2\beta_s = -0.0360 \pm 0.0018$ rad

Dans LHCb, on mesure la phase $\phi_s = -2\beta_s + \Phi_{NP}$

Définiton de la phase $\phi_{\rm s}$

 $\phi_{\rm s}$ est créée par les interférences entre :

Donc ϕ_s apparaît dans les taux de désintégrations de $B^0_s \rightarrow J/\psi \phi$

Taux de désintégrations de $B_s^0 \rightarrow J/\psi \phi$

Taux de désintégrations :

$$\frac{\mathrm{d}^4 \Gamma(\mathrm{B}^0_\mathrm{s} \to \mathrm{J}/\!\psi \phi)}{\mathrm{d}t \, \mathrm{d}\Omega} \propto \sum_{k=1}^6 h_k(t) f_k(\Omega) \,, \quad \mathrm{and} \quad \frac{\mathrm{d}^4 \Gamma(\overline{\mathrm{B}^0_\mathrm{s}} \to \mathrm{J}/\!\psi \phi)}{\mathrm{d}t \, \mathrm{d}\Omega} \propto \sum_{k=1}^6 \bar{h}_k(t) f_k(\Omega) \,.$$

Dépendances temporelles et angulaires pour B_s⁰ :

k	$h_k(t)$	$\bar{h_k}(t)$	$f_k(heta,\psi,arphi)$
1	$ A_0(t) ^2$	$ \bar{A}_0(t) ^2$	$2\cos^2\psi(1-\sin^2 heta\cos^2arphi)$
2	$ A_{ }(t) ^2$	$ \bar{A}_{ }(t) ^2$	$\sin^2\psi(1-\sin^2 heta\sin^2arphi)$
2	$ A_{ }(t) ^2$	$ \bar{A}_{ }(t) ^2$	$\sin^2\psi(1-\sin^2 heta\sin^2arphi)$
3	$ A_{\perp}(t) ^2$	$ \bar{A}_{\perp}(t) ^2$	$\sin^2\psi\sin^2 heta$
4	$\Im\{A^*_{ }(t)A_{\perp}(t)\}$	$\Im\{\bar{A}^*_{ }(t)\bar{A}_{\perp}(t)\}$	$-\sin^2\psi\sin2 heta\sinarphi$
5	$\Re\{A_0^*(t)A_{ }(t)\}$	$\Re\{\bar{A}_0^*(t)\bar{A}_{ }(t)\}$	$rac{1}{\sqrt{2}}\sin 2\psi \sin^2 heta\sin 2arphi$
6	$\Im\{A_0^*(t)A_{\perp}(t)\}$	$\Im\{\bar{A}_0^*(t)\bar{A}_{\perp}(t)\}$	$rac{1}{\sqrt{2}}\sin 2\psi \sin 2 heta \cos arphi$

Cadre théorique

Taux de désintégrations de $B_s^0 \rightarrow J/\psi \phi$

Amplitudes dépendantes du temps pour B_s⁰ :

$$\begin{split} &|A_{0}(t)|^{2} = |A_{0}(0)|^{2} e^{-\Gamma_{S}t} \Big[\cosh\left(\frac{\Delta\Gamma_{S}t}{2}\right) - \cos\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}t}{2}\right) + \sin\phi_{S} \sin(\Delta m_{s}t) \Big] , \\ &|A_{\parallel}(t)|^{2} = |A_{\parallel}(0)|^{2} e^{-\Gamma_{S}t} \Big[\cosh\left(\frac{\Delta\Gamma_{S}t}{2}\right) - \cos\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}t}{2}\right) + \sin\phi_{S} \sin(\Delta m_{s}t) \Big] , \\ &|A_{\perp}(t)|^{2} = |A_{\perp}(0)|^{2} e^{-\Gamma_{S}t} \Big[\cosh\left(\frac{\Delta\Gamma_{S}t}{2}\right) + \cos\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}t}{2}\right) + \sin\phi_{S} \sin(\Delta m_{s}t) \Big] , \\ &\Re\{A_{0}^{*}(t)A_{\parallel}(t)\} = |A_{0}(0)||A_{\parallel}(0)|e^{-\Gamma_{S}t} \cos\delta_{\parallel} \Big[\cosh\left(\frac{\Delta\Gamma_{S}t}{2}\right) - \cos\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}t}{2}\right) + \sin\phi_{S} \sin(\Delta m_{s}t) \Big] \\ &\Re\{A_{\parallel}^{*}(t)A_{\perp}(t)\} = |A_{\parallel}(0)||A_{\perp}(0)|e^{-\Gamma_{S}t} \Big[- \cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}t}{2}\right) + \sin\phi_{S} \sin(\Delta m_{s}t) \Big] \\ &+ \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) + \cos\phi_{S} \sin(\Delta m_{s}t) \Big] , \\ &\Im\{A_{0}^{*}(t)A_{\perp}(t)\} = |A_{0}(0)||A_{\perp}(0)|e^{-\Gamma_{S}t} \Big[- \cos\delta_{\perp} \sin\phi_{S} \sinh\left(\frac{\Delta\Gamma_{S}t}{2}\right) + \sin\delta_{\perp} \cos(\Delta m_{s}t) \Big] , \end{split}$$

- φ_s apparaît dans les dépendances temporelles
- Amplitudes temporelles pour B
 ⁰_s: opposer les signes
 → si pas d'étiquetage (= B⁰_s ou B
 ⁰_s?) → Perte de sensibilité sur φ_s

Cadre théorique

Pourquoi mesurer ϕ_s dans $B_s^0 \rightarrow J/\psi \phi$

- Avantages de $B^0_s \rightarrow J/\psi(\mu\mu)\phi(KK)$:
 - Rapport de branchement visible important : 33.6.10⁻⁶ soit 1500 pour 37 pb⁻¹, à 7 TeV
 - Désintégration du J/ $\psi(\mu\mu)$
- Inconvénients de $B_s^0 \rightarrow J/\psi(\mu\mu)\phi(KK)$:
 - Oscillations rapides : Δm_s = (17.77 ± 0.12) ps⁻¹
 → Nécessite une bonne résolution temporelle
 - Désintégration d'un pseudo-scalaire (spin=0) en 2 vecteurs $(J^{\mbox{\scriptsize PC}}=1^-)$
 - Conservation du moment angulaire total $\rightarrow \ell = 0, 1, 2$
 - \rightarrow Mélange d'états finals CP pairs et impairs

→ Etude angulaire pour séparer statistiquement les états CP pairs/impairs

Comment mesurer ϕ_{s} dans LHCb

- Détecter et déclencher $B^0_s \rightarrow J/\psi \phi$
- Sélectionner les désintégrations B⁰_s → J/ψφ et ses canaux de controle (B⁺ → J/ψK⁺, B⁰ → J/ψK^{*0}) de manière similaire
- Mesurer le temps propre (résolution, acceptance)
- Mesurer les angles (résolutions, acceptances)
- Etiqueter la saveur initiale des mésons B⁰_s, B⁺, B⁰
- Solution Ajuster la fonction de vraisemblance des taux de désintégration : $\mathcal{L}(t, q, \theta, \phi, \psi, m; \phi_{s}, \Gamma_{s}, \Delta \Gamma_{s}, \Delta m_{s}, A_{\parallel}(t), A_{\perp}(t), \delta_{\parallel}, \delta_{\perp}, \omega, \sigma(t), ...)$
- Etude des erreurs systématiques

Comment mesurer ϕ_s : mes contributions

Détecter et déclencher

- Sélectionner les désintégrations $B_s^0 \rightarrow J/\psi\phi$ et ses canaux de controle ($B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$) de manière similaire
- Mesurer le temps propre (résolution, acceptance)
- Mesurer les angles (résolutions, acceptances)
- Etiqueter la saveur initiale des mésons B⁰_s, B⁺, B⁰
- Solution Ajuster la fonction de vraisemblance des taux de désintégration : $\mathcal{L}(t, q, \theta, \phi, \psi, m; \phi_{s}, \Gamma_{s}, \Delta\Gamma_{s}, \Delta m_{s}, A_{\parallel}(t), A_{\perp}(t), \delta_{\parallel}, \delta_{\perp}, \omega, \sigma(t), ...)$
- Etude des erreurs systématiques

Cadre théorique

Résultats actuels et à venir de ϕ_{s}

Contraintes actuelles du Tevatron :

- CDF : $\mathcal{L} = 5.2 \, {\rm fb^{-1}}, \, \phi_{\rm s} \, \in \, [0.0.2, 0.52] \cup [1.08, 1.55] \, {\rm rad} \, {\rm at} \, 68 \, \% \, \, {\rm CL}$
- $D\emptyset$: $\mathcal{L} = 6.1 \text{ fb}^{-1}$, $\phi_s = -0.76^{+0.38}_{-0.36}(stat) \pm 0.02(syst)$ rad

LHCb :

- Fin 2010, $\mathcal{L} = 37.7 \, \text{pb}^{-1}$
- Fin 2011, $\mathcal{L} \sim 1 \, \mathrm{fb}^{-1}$

Pour $\mathcal{L} > 0.05 \, \text{fb}^{-1}$ LHCb sera compétitif avec le Tevatron

Cadre expérimental

Cadre expérimental

Cadre expérimental

LHC et LHCb

- LHC : Large Hadron Collider
 - Installé au CERN
 - 27 km de circonférence
 - Collisions proton-proton, à 7 TeVdepuis le 30 mars 2010
 - 4 expériences majeures : ATLAS, ALICE, CMS et LHCb

Paires bb principalement émises à petit angle

- LHCb : Détecteur dédié à la physique des hadrons b
 - Mesures de la violation CP (dont ϕ_s)
 - Etudes de désintégrations rares

Le détecteur LHCb

Spectromètre orienté vers l'avant depuis le point de collision

Prise de données en 2010

 Du 30 mars au 4 novembre 2010 : 37.7 pb⁻¹ enregistrés

• Début des mesures phares de LHCb (ϕ_s , $B_s^0 \rightarrow \mu^+ \mu^-$, ...)

Cadre expérimental

Premiers candidats $B^+ \rightarrow J/\psi K^+$, $B_s^0 \rightarrow J/\psi \phi$

Premier candidat hadron b : $B^+ \to J\!/\!\psi K^+$

Premier candidat $B_s^0 \rightarrow J/\psi \phi$

Mesure de ϕ_s avec LHCb

Étude des acceptances angulaires de ${
m B}^0_{
m s}
ightarrow {
m J}/\psi\,\phi$

Étude des acceptances angulaires de $B_s^0 \rightarrow J/\psi \phi$ avec la simulation

É. Maurice CPPM

Mesure de ϕ_s avec LHCb

26 Novembre 2010 18 / 31

Distribution angulaires

Définition des angles en base de transversité de ${
m B}^0_{
m s}
ightarrow {
m J}\!/\!\psi\phi$

Distributions caractéristiques de chaque angles :

É. Maurice CPPM

Quantification des distorsions angulaires

 Différence entre distributions angulaires expérimentales et théoriques → source d'erreurs systématiques

 $Acceptance = \frac{\text{Distribution expérimentale}}{\text{Distribution théorique}}$

• Quantification des distorsions des acceptances :

 $Distorsion = \frac{Maximum - Minimum}{Maximum}$

 Après simulation complète, trigger et sélection, on obtient ces acceptances angulaires :

ightarrow Quelles sont les sources de ces distorsions angulaires ?

Sources des distorsions angulaires

Démarche :

• Générer les quadri-impulsions des évènements $B^0_s \to J\!/\!\psi\phi$ sans aucune coupure, dans 4π

• Appliquer indépendamment chaque coupure

- Forme du détecteur
- Coupures cinématiques de la sélection
- Reproduction des efficacités de reconstruction
- Calculer les distorsions

Coupures	cos $ heta$	ϕ	$cos\psi$
Détecteur	7.4 ± 1.1	13.5 ± 1.1	3.8 ± 1.2
Sélection	3.2 ± 1.2	3.8 ± 1.2	4.5 ± 1.2
Efficacité de reconstruction	4.1 ± 0.6	4.0 ± 1.0	$\textbf{2.7}\pm\textbf{0.9}$
Toutes	8.2 ± 3.1	14.7 ± 3.1	$\textbf{7.9} \pm \textbf{3.5}$

- Formes et ordres de grandeurs des acceptances angulaires retrouvées
- Principale source de distorsions : la forme du détecteur
- Correction des distorsions avec la simulation MC.

Performances de l'étiquetage

Performances de l'étiquetage

É. Maurice CPPM

Mesure de $\phi_{\rm S}$ avec LHCb

26 Novembre 2010 22 / 31

Définition de l'étiquetage

La mesure de ϕ_s nécessite de connaître la saveur initiale du B_s^0

- Or oscillations des mésons B neutres
- Donc utilisation des informations disponibles lors de la création du méson B
 - Quark de fragmentation du signal
 - Hadron b opposé (quarks b créés par paire bb̄)

Définition des paramètres de l'étiquetage

On définit 3 paramètres :

- ω : fraction de mauvais étiquetage : $\frac{W}{R+W}$
- ϵ_{tag} : efficacité d'étiquetage : $\frac{R+W}{R+W+U}$
- $\epsilon_{tag}(1-2\omega)^2$: puissance d'étiquetage

But : Déterminer la fraction de mauvais étiquetage de $B^0_s \rightarrow J/\psi \phi$

- Difficile d'obtenir ω directement dans $B^0_s \rightarrow J/\!\psi \phi$
- Extraction de ω dans les canaux de contrôle ${\rm B^+} \to {\rm J}\!/\!\psi{\rm K^+}$ et ${\rm B^0} \to {\rm J}\!/\!\psi{\rm K^{*0}}$
- Insertion de ω dans $B_s^0 \rightarrow J/\psi \phi$

Rmq : Les études suivantes ont aussi été faites pour quantifier les performances de chaque marqueur, et aussi en fonction du nombre de vertex primaires

É. Maurice CPPM

Mesure de ϕ_s avec LHCb

Étiquetage des désintégrations $B^+ \rightarrow J/\psi K^+$

- Désintégrations $B^+ \rightarrow J/\psi K^+$ sont auto-étiquetées
- Mesure de performances de l'algorithme d'étiquetage :
 - Compare la réponse de l'algorithme $(B^+,B^-,$ non étiqueté) avec le signe du K^\pm
 - Sépare les données en bien/mal/non étiquetées
 - Ajuste une fonction de vraisemblance
 → Nombre de signal pour chaque catégorie
 - Calcule les performances d'étiquetage
- Résultats :

• $\omega = censuré$

•
$$\omega_{\text{simulation}} = (37.7 \pm 0.2) \%$$

 \rightarrow Algorithme d'étiquetage doit être adapté aux conditions 2010

Etiquetage des désintégrations $B^0 \rightarrow J/\psi K^{*0}$

Pour mesurer ω , on doit ajuster une fonction de vraisemblance

Le taux de désintégration de $B^0 \! \to J \! / \! \psi K^{*0}$ rend compte de :

- l'oscillation des B^0 avec le terme Δm_d ,
- de la saveur initiale des B⁰ avec le terme q
- de la probabilité de mauvais étiquetage : ω

• $\omega =$ censuré

- $\omega_{\text{simulation}} = (37.7 \pm 0.2)\%$
- Algorithme d'étiquetage doit être adapté aux conditions de fonctionnement du LHC
- Modèle du bruit de fond doit être améliorer
 - $(\rightarrow K^{*0}$ implique plus de bruit)

Étude des interactions multiples

Étude des interactions multiples

É. Maurice CPPM

Mesure de ϕ_s avec LHCb

26 Novembre 2010 27 / 31

Étude des interactions multiples

Moyenne du nombre d'interactions proton-proton par croisement de faisceaux dans LHCb :

- Conditions nominales : 0.4
- En 2010 : > 1

Nombre important d'évènements avec 2, 3, 4 vextex primaires

Étude de ϕ_s possible dans ces conditions de fonctionnement?

- Sélection de $B^0_s \rightarrow J/\psi \phi$, $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$?
- Étiquetage de $B_s^0 \rightarrow J/\psi \phi$, $B^+ \rightarrow J/\psi K^+$, $B^0 \rightarrow J/\psi K^{*0}$?
- Mesure de ϕ_s ?

Distances minimales entre les vertex primaires

Dans la simulation, la distance minimale entre les vertex primaires les plus proches :

Distance moyenne de vol d'un méson B : \sim 1cm.

Études menées avec des collisions multiples

Travaux effectués dans la simulation concernant la sélection :

- Faible dégradation de l'efficacité de sélection du signal avec le nombre de vertex primaires
- Rapport Bruit/Signal a tendance à rester constant avec le nombre de vertex primaires, mais pas assez de statistiques pour conclure

Études en cours, dans les vraies données :

- Étude des performances d'étiquetage en fonction du nombre de vertex primaires → Pas assez de statistique pour conclure
- Étude de nouvelle variable ayant un pouvoir discrimant important entre les différents vertex primaires

Conclusions et perspectives

- La mesure de la phase $\phi_{\rm s}$ nécessite une compréhension complète :
 - Paramètres du détecteur
 - Paramètres physiques
 - Variables : temps, masse, angles, étiquetage
- Études menées :
 - Sources de distorsions angulaires
 - Mesure des performances d'étiquetage dans $B^+ \to J\!/\!\psi K^+, \ B^0 \to J\!/\!\psi K^{*0}$
 - Sélection et étiquetage lors d'interactions multiples
- Perspectives :
 - Amélioration des performances d'étiquetage
 - Étude de variables discriminantes lors d'interactions multiples
 - meilleur compréhension du bruit
 - Séparation des performances en catégorie
 - Mesurer ϕ_{s} $\ddot{-}$

Image: A math a math

Résolutions du détecteur

VELO:

 $\sigma(IP) \sim (14+35/p_T(GeV)) \ \mu m \ \sigma(t) \sim (40-100) \ fs$

ECAL

 $\sigma(E)/E \sim (9.4/\sqrt{E(\text{GeV})} + 0.83) \times 10^{-2}$ $\sigma(m[\mathbf{B}_{s} \rightarrow \phi \gamma]) \sim 90 \text{ MeV}$

TRACKING

 $\epsilon = 95\%$ when p > 5 GeV and $1.9 < \eta < 4.9$ $\sigma(p)/p \sim 0.4\%$ $\sigma(m[\mathbf{B}_{s} \rightarrow \mu \mu]) \sim 20 \text{ MeV}$ $\sigma(m[\mathbf{K}^{*} \mu \mu]) \sim 15 \text{ MeV}$

MUON, RICH

 $\epsilon({\rm K}){\sim}88\%$ for 3% π mis-id $\epsilon(\mu){\sim}95\%$ for 5% $\pi/{\rm K}$ mis-id

Image: Image:

LEVEL-0 TRIGGER

 $\begin{array}{l} \epsilon \, (\mathbf{B}_{\mathrm{d},\mathrm{s}} \! \rightarrow \! J/\psi \, \mathbf{X}) \! \sim \! 90 \, \% \\ \epsilon \, (\mathbf{B}_{\mathrm{d},\mathrm{s}} \! \rightarrow \! hh) \! \sim \! 50 \, \% \end{array}$

.

Contrainte sur A_s par D0

 $\Phi_{\rm NP}$ apparaît dans la mesure de A_{sl}

 $A_{\rm sl}$: asymétrie dans le mélange des mésons $B_{\rm s}$ se désintégrant de manière semi-leptonique.

ad

Contribution CP pair et impair

Système de mésons B

• Les mésons B_q correspondent à une superposition d'états quantiques : $|B_L\rangle = p.|B_q\rangle + q.|\overline{B_q}\rangle, \qquad |B_H\rangle = p.|B_q\rangle - q.|\overline{B_q}\rangle$

 $|\mathbf{b}_{\mathrm{L}}\rangle = p \cdot |\mathbf{b}_{\mathrm{q}}\rangle + q \cdot |\mathbf{b}_{\mathrm{q}}\rangle, \qquad |\mathbf{b}_{\mathrm{H}}\rangle = p \cdot |\mathbf{b}_{\mathrm{q}}\rangle - q \cdot |\mathbf{b}_{\mathrm{q}}\rangle$ avec *p*, *q* des coefficients complexes tels que $|p|^2 + |q|^2 = 1$

 Évolution temporelle est décrite par l'hamiltonien H = M + ⁱ/₂Γ avec M et Γ les matrices de masses et de largeurs de désintégration

• Définitions des différences de :

- Masses : $\Delta m_{\rm q} = M_{\rm H} M_{\rm L}$
- Largeurs de désintégration : $\Delta\Gamma_q=\Gamma_H-\Gamma_L$
- Définitions des amplitudes de désintégration pour un état final $f A_f = \langle f | \mathcal{H} | B_q \rangle$ $\overline{A_f} = \langle f | \mathcal{H} | \overline{B_q} \rangle$

Road map tagging results : DC06

${ m B}^0_{ m s} ightarrow { m J}\!/\!\psi(\mu\mu)\phi({ m K}{ m K})$

Taggers	ω	€tag	$\epsilon_{tag}.(1-2\omega)^2$
OSMUON	(31.9±0.6)%	$(0.76 \pm 0.05)\%$	$(5.77 \pm 0.08)\%$
OSELECTRON	(32.0 ± 0.9)%	$(2.91 \pm 0.06)\%$	$(0.38 \pm 0.04)\%$
OSKAON	(35.6 ± 0.4)%	$(15.06 \pm 0.12)\%$	$(1.25 \pm 0.07)\%$
SSKAON	$(34.9 \pm 0.3)\%$	$(26.37 \pm 0.15)\%$	$(2.39 \pm 0.10)\%$
VtxCharge	$(42.1 \pm 0.2)\%$	$(44.35 \pm 0.17)\%$	$(1.09 \pm 0.07)\%$
OS Combined	(36.51 ± 0.24)%	$(45.61 \pm 0.17)\%$	$(3.32 \pm 0.11)\%$
Average	$(35.88 \pm 0.21)\%$	$(55.71 \pm 0.17)\%$	$(4.45 \pm 0.14)\%$

Road map tagging results : DC06

${ m B^+} ightarrow { m J}\!/\!\psi(\mu\mu){ m K^+}$

Taggers	ω	ϵ_{tag}	$\epsilon_{tag}.(1-2\omega)^2$
OSMUON	(31.3 ± 0.5)%	$(5.42 \pm 0.06)\%$	$(0.76 \pm 0.04)\%$
OSELECTRON	$(31.5 \pm 0.8)\%$	$(2.71 \pm 0.04)\%$	$(0.37 \pm 0.03)\%$
OSKAON	(33.1 ± 0.3)%	$(14.15 \pm 0.09)\%$	$(1.61 \pm 0.07)\%$
SSPION	(37.8 ± 0.3)%	$(19.14 \pm 0.11)\%$	$(1.14 \pm 0.05)\%$
VtxCharge	$(42.4 \pm 0.2)\%$	$(42.36 \pm 0.13)\%$	$(0.97 \pm 0.05)\%$
OS Combined	$(36.15 \pm 0.20)\%$	$(43.63 \pm 0.13)\%$	$(3.35\pm0.09)\%$
Average	$(3.21 \pm 0.09)\%$	$(52.76 \pm 0.14)\%$	$(37.67 \pm 0.18)\%$

Road map tagging results : DC06

${ m B}^0 \! ightarrow { m J}\!/\!\psi(\mu\mu){ m K}^{*0}({ m K}\pi)$

Taggers	ω	ϵ_{tag}	$\epsilon_{tag}.(1-2\omega)^2$
OSMUON	(31.2 ± 0.6)%	$(5.54 \pm 0.07)\%$	$(0.78 \pm 0.05)\%$
OSELECTRON	$(30.9 \pm 0.8)\%$	$(2.69 \pm 0.05)\%$	$(0.39 \pm 0.03)\%$
OSKAON	(33.0 ± 0.4)%	$(14.11 \pm 0.10)\%$	$(1.63 \pm 0.07)\%$
SSPION	(38.1 ± 0.3)%	$(20.35 \pm 0.12)\%$	$(1.16 \pm 0.06)\%$
VtxCharge	(42.1 ± 0.2)%	$(42.73 \pm 0.14)\%$	$(1.07 \pm 0.06)\%$
OS Combined	$(6.00 \pm 0.21)\%$	$(43.95 \pm 0.14)\%$	$(3.45 \pm 0.10)\%$
Average	$(37.69 \pm 0.19)\%$	$(53.60\pm0.15)\%$	$(3.25 \pm 0.10)\%$

$J/\psi(\mu\mu)$ selection

Roadmap cuts adapted to 7 TeV (see B. Khanji, 27 May 2010)

- two oppositely charged long track identified as ISMUON
- muons $\Delta \ln \mathcal{L}_{\mu\pi} > 0$
- muons $\chi^2_{\rm track}/{\rm nDoF} < 4$
- $\min(\rho_{\rm T}\mu^+, \rho_{\rm T}\mu^-) > 500 \,{\rm MeV}/c$
- $\chi^2_{\rm vtx}/{\rm nDoF}(J/\psi) < 11$
- Signal window is $|M(\mu\mu) M^{\rm fitted}(J/\psi)| < \pm 48\,{
 m MeV}/c^2$

$B^+ \rightarrow J/\psi K^+$ selection

Decay mode	Offline	
	cut	
K ⁺	$\Delta \ln \mathcal{L}_{K\pi} > 0$	
	$\Delta \ln \mathcal{L}_{\mathrm{Kp}} > -2$	
	kaons $\chi^2_{ m track}/ m nDoF < 4$	
	$pT(K^+) > 1.3 \text{GeV/c}$	
	$p(K^+) > 10 \text{GeV/c}$	
${ m B^+} ightarrow { m J}\!/\!\psi { m K^+}$	$\chi^2_{ m vtx}/ m nDoF < 5$	
	B^+ min IP χ^2 wrt PV < 25	

${ m B}^0 \! ightarrow { m J}\!/\!\psi { m K}^{*0}$ selection

Decay mode	Cut	
$\mathrm{K}^{*0} \rightarrow \mathrm{K}^{+} \pi^{-}$	$\Delta \ln \mathcal{L}_{K\pi} > 0$	
	$\Delta \ln \mathcal{L}_{\mathrm{Kp}} > -2$	
	kaon and pion $\chi^2_{ m track}/ m nDoF < 10$	
	$\chi^2_{ m vtx}/ m nDoF(K^{*0}) < 20$	
	$oldsymbol{ ho}_{ m T}({ m K}^{*0})>$ 1 GeV/ $oldsymbol{c}$	
	$ M(K^{+}\pi^{-}) - M(K^{*0}) < \pm 70 \mathrm{MeV/c^{2}}$	
$B^0 \rightarrow J/\psi K^{*0}$	$ M(\mu\mu K) - M(B^+) > 60 \text{ MeV/}c^2$	
	$\chi^2_{ m vtx}/ m nDoF < 5$	
	B^{0} min IP χ^{2} wrt PV $<$ 25	

イロト イヨト イヨト イヨト

${\rm B}^0_{\rm s} \! ightarrow {\rm J}\!/\!\psi\phi$ selection

Decay mode	Cut	
$\phi \rightarrow \mathrm{K}^{+}\mathrm{K}^{-}$	$\Delta \ln \mathcal{L}_{K\pi} > 0$	
	kaons $\chi^2_{ m track}/ m nDoF < 10$	
	$\chi^2_{ m vtx}/ m nDoF(\phi) < 20$	
	$oldsymbol{ ho}_{ m T}(\phi)>$ 1 GeV/ $oldsymbol{c}$	
	$ M(\mathrm{K^+K^-}) - M(\phi) < \pm 12 \mathrm{MeV}/c^2$	
$B_s^0 \rightarrow J/\psi \phi$	$\chi^2_{ m vtx}/ m nDoF < 5$	
	$\mathrm{B^0_s}$ min IP χ^2 wrt PV $<$ 25	

É. Maurice CPPM

イロト イヨト イヨト イヨト

$B \rightarrow J/\psi X$ MC2010 expected signal

• Expected number of $B^+ \to J\!/\!\psi K^+,\, B^0 \to J\!/\!\psi K^{*0},\, B^0_s \to J\!/\!\psi \phi$:

$$S = \mathcal{L}_{int} \times \sigma_{b\overline{b}} \times 2 \times f_{u,d,s} \times \mathcal{BR}_{vis} \times \varepsilon_{tot}$$

• Total signal efficiency, ε_{tot} , based on MC2010

•
$$\sigma_{\rm pp \rightarrow b\overline{b}}$$
(7TeV) = 0.292 mb (LHCb preliminary)

	$\mathcal{BR}_{\mathit{vis}}$	$\varepsilon_{\mathrm{tot}}$ (%)	$S/10 { m nb}^{-1}$
${ m B^+} ightarrow { m J}\!/\psi(\mu\mu){ m K^+}$	$(5.9\pm0.2) imes10^{-5}$	3.6	5.0
$\mathrm{B}^0 ightarrow \mathrm{J}/\psi(\mu\mu)\mathrm{K}^{*0}(\mathrm{K}\pi)$	$(5.25\pm0.24) imes10^{-5}$	2.0	2.4
${ m B}^0_{ m s} ightarrow { m J}\!/\!\psi(\mu\mu)\phi({ m K}{ m K})$	$(2.71\pm0.96) imes10^{-5}$	2.8	0.5

Uncertainty on the signal yield >50% !

MC2010 $B \rightarrow J/\psi X$ expected background

Total *B*/*S* computed in exclusive MC2010 samples : b removed from Incl J/ ψ and min bias, incl J/ ψ removed from min bias

$$rac{B_{ ext{tot}}}{S} = rac{B_{ ext{b}\overline{ ext{b}}}}{S} + rac{B_{ ext{Pr}}}{S} + rac{B_{ ext{min bias}}}{S}$$

	$S/10 { m nb}^{-1}$	$B_{ m bb}/S$	$B_{\rm Pr}/S$	$B_{\min bias}/S$	$B_{\rm tot}/S$
$B^+ \rightarrow J/\psi K^+$	5.0 ± 1.7	0.28 ± 0.06	1.8 ± 0.3	[0.2, 6.6]	[2.2, 8.7]
${ m B}^0 ightarrow { m J}\!/\!\psi { m K}^{st 0}$	2.4 ± 1.2	2.3 ± 0.2	19.3 ± 1.9	24.6 ± 15.1	46.2 ± 15.2
${ m B}^0_{ m s} ightarrow { m J}\!/\!\psi\phi$	0.5 ± 0.3	$\textbf{0.46} \pm \textbf{0.21}$	3.3 ± 1.2	< 37.4	< 41.2

90%CL bounds

Very large uncertainty on background level due to small size of MC samples !