Introduction to the JJC session: Physics Beyond the Standard Model

Laura Lopez Honorez

Service de Physique Théorique Université Libre de Bruxelles

Journées Jeunes Chercheurs 2010 - Angers

Laura Lopez Honorez (ULB)

Intro BSM - JJC 2010

22 Novembre 2010 1 / 18

I= nac

A B > A B >

The Standard Model of particle physics

...a theory for the electromagnetic, weak, and strong interactions

Particle Content

E SQA

The Standard Model of particle physics

...a theory for the electromagnetic, weak, and strong interactions

Particle Content

- 3 families of quark and leptons
- 4 types of gauge interaction mediators
- *H* Brout-Englert-Higgs boson???

The Standard Model of particle physics

...a theory for the electromagnetic, weak, and strong interactions

Particle Content

- 3 families of quark and leptons
- 4 types of gauge interaction mediators
- *H* Brout-Englert-Higgs boson???
- symmetries : $SU(3)_C \times SU(2)_L \times U(1)_Y$

	$SU(3)_C, SU(2)_L, U(1)_Y$	chir				
Q	(3, 2, +1/6)	L				
и	(3, 1, +2/3)	R				
d	(3, 1, -1/3)	R				
L	(1, 2, -1/2)	L				
е	(1, 1, -1)	R				
Η	(1, 2, -1/2)	-				
waird quantum numbers isn't it?						

 \rightsquigarrow weird quantum numbers, isn't it ?

EL OQA

Standard Model works well

Since its formulation in mid 70's :

• discovery of the 3d generation of quarks : b(in 1977), t (in 1995) expected from CP violation in CKM matrix

EL OQA

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Standard Model works well

Since its formulation in mid 70's :

• discovery of the 3d generation of quarks : b(in 1977), t (in 1995) expected from CP violation in CKM matrix

Standard Model works well

Since its formulation in mid 70's :

• discovery of the 3d generation of quarks : b(in 1977), t (in 1995) expected from CP violation in CKM matrix

Several experiments overlap consistently in the 95% CL region Is there still room for new physics ? \rightarrow see Emilie talk on friday : study the $B_s \rightarrow J/\Psi\phi$

Laura Lopez Honorez (ULB)

Intro BSM - JJC 2010

= 200

- discovery of the ν_{τ} (2000)
- Successful in various experimental tests Comparing the fit of several electroweak measurements to their direct measurement
 \$\sigma\$ good agreement

 \rightsquigarrow more, see SM session

E SQA

A 3 - 5

Also ...

- discovery of the ν_{τ} (2000)
- Successful in various experimental tests Comparing the fit of several electroweak measurements to their direct measurement
 ~> good agreement
- \rightsquigarrow more, see SM session

But what about...

- neutrino masses \leftrightarrow see neutrino session from neutrino oscillations we know that $\Delta m^2 \sim 10^{-3}$ and 10^{-5} eV^2 .
- not enough CP violation for baryogenesis
 matter antimatter asymmetry ?

ELE DOG

But what about...

• Dark matter Dark energy ?

Several sources converges for a universe made of 95% of unknown

EL OQO

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

But what about...

• Dark matter Dark energy ?

Several sources converges for a universe made of 95% of unknown

= 900

A B > A B

But what about...

• Dark matter Dark energy ?

Several sources converges for a universe made of 95% of unknown

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E SQA

But what about...

• Dark matter Dark energy ?

Several sources converges for a universe made of 95% of unknown

→ more, see Cosmo, Astroparticle session

Laura Lopez Honorez (ULB)

Intro BSM - JJC 2010

22 Novembre 2010 5 / 18

But what about...

- Higgs particle ?
 - LEP searches $\rightsquigarrow M_H > 114.4 \text{ GeV} (95\% \text{ CL})$
 - Tevatron searches → 158 < M_H < 175 GeV excluded at (95% CL)
 - EW precision test within the SM $\rightsquigarrow M_H < 149 \text{ GeV} (95\% \text{ CL})$
 - get large radiative corrections : $\delta m_H \propto \Lambda^2$

But what about...

• Higgs particle ?

- LEP searches $\rightsquigarrow M_H > 114.4 \text{ GeV} (95\% \text{ CL})$
- Tevatron searches → 158 < M_H < 175 GeV excluded at (95% CL)
- EW precision test within the SM $\rightsquigarrow M_H < 149 \text{ GeV} (95\% \text{ CL})$
- get large radiative corrections : $\delta m_H \propto \Lambda^2$

$$M_W = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_F}} \frac{1}{\sin\theta_W \sqrt{1-\Delta r}}$$

depend on M, as ~M,2 and on M, as ~log M,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intro BSM - JJC 2010

But what about...

• Higgs particle ?

- LEP searches $\rightsquigarrow M_H > 114.4 \text{ GeV} (95\% \text{ CL})$
- Tevatron searches → 158 < M_H < 175 GeV excluded at (95% CL)
- EW precision test within the SM
 → M_H < 149 GeV (95% CL)
- get large radiative corrections : $\delta m_H \propto \Lambda^2$
- hierarchy problem :

between quark masses $m_u/m_t \sim 10^{-5}$, between EW and Plank scale $\Lambda_{EW}/\Lambda_{Plank} \sim 10^{-17}$

$$M_W = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_F}} \frac{1}{\sin\theta_W \sqrt{1-\Delta r}}$$

depend on M, as ~M,2 and on M, as ~log M,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intro BSM - JJC 2010

But what about...

• Higgs particle ?

- LEP searches $\rightsquigarrow M_H > 114.4 \text{ GeV} (95\% \text{ CL})$
- Tevatron searches → 158 < M_H < 175 GeV excluded at (95% CL)
- EW precision test within the SM
 → M_H < 149 GeV (95% CL)
- get large radiative corrections : $\delta m_H \propto \Lambda^2$
- hierarchy problem :

between quark masses $m_u/m_t \sim 10^{-5}$, between EW and Plank scale $\Lambda_{EW}/\Lambda_{Plank} \sim 10^{-17}$

• gravitation not included

$$M_W = \sqrt{\frac{\pi\alpha}{\sqrt{2}G_F}} \frac{1}{\sin\theta_W \sqrt{1-\Delta r}}$$

depend on M, as ~M,2 and on M, as ~log M,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Intro BSM - JJC 2010

But what about...

- Higgs particle ?
 - LEP searches $\rightsquigarrow M_H > 114.4 \text{ GeV} (95\% \text{ CL})$
 - Tevatron searches → 158 < M_H < 175 GeV excluded at (95% CL)
 - EW precision test within the SM $\rightsquigarrow M_H < 149 \text{ GeV} (95\% \text{ CL})$
 - get large radiative corrections : $\delta m_H \propto \Lambda^2$
- hierarchy problem : between quark masses $m_u/m_t \sim 10^{-5}$, between EW and Plank scale $\Lambda_{EW}/\Lambda_{Plank} \sim 10^{-17}$
- gravitation not included
- why 3 generations of particles not more ?

 $M_W = \sqrt{\frac{\pi \alpha}{\sqrt{2}G_F}} \frac{1}{\sin \theta_W \sqrt{1 - \Delta r}}$

depend on M, as ~M,2 and on M, as ~log M,

Extensions of the standard Model

courtesy to G. Bertone

Intro BSM - JJC 2010

3 > < 3

E SQA

< 口 > < 同

Extensions of the standard Model Bottom-Up approach

Intro BSM - JJC 2010

• A second Higgs doublet :

2HDM are typical of e.g. supersymmetry → pheno good to be understood → see talk of Audrey and Guillaume Drieu (in the SUSY framework) today !!

• A second Higgs doublet :

2HDM are typical of e.g. supersymmetry → pheno good to be understood → see talk of Audrey and Guillaume Drieu (in the SUSY framework) today !!

... & and symmetries

• A Z₂ symmetry

A B > 4 B

• A second Higgs doublet :

2HDM are typical of e.g. supersymmetry → pheno good to be understood → see talk of Audrey and Guillaume Drieu (in the SUSY framework) today !!

... & and symmetries

- A Z₂ symmetry
 - e.g. in a 2HDM : $H_2 \rightarrow -H_2$, $SM \rightarrow SM$ \rightsquigarrow great candidate for DM

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

• A second Higgs doublet :

2HDM are typical of e.g. supersymmetry → pheno good to be understood → see talk of Audrey and Guillaume Drieu (in the SUSY framework) today !!

... & and symmetries

• A Z₂ symmetry

- e.g. in a 2HDM : $H_2 \rightarrow -H_2$, $SM \rightarrow SM$ \rightsquigarrow great candidate for DM
- necessary in SUSY to avoid rapid decay of the proton (R parity)

Bottom-Up approach : Let's add Particles & Symmetries

 L-R symmetry SU(3)_c×SU(2)_R×SU(2)_L×U(1) (similar to those embedded in symmetry breaking patterns of GUT)

• ν_R automatically presents, better for neutrino masses

Bottom-Up approach : Let's add Particles & Symmetries

 L-R symmetry SU(3)_c×SU(2)_R×SU(2)_L×U(1) (similar to those embedded in symmetry breaking patterns of GUT)

- ν_R automatically presents, better for neutrino masses
- Among the new physics involved : new gauge bosons of spin 1 Z'

→ prospects for detection at LHC : see talks of Vincent today for CMS and Ludovica for Atlas on friday

イヨトイヨト

Extensions of the standard Model Top-Down approach : Hierarchy and Unification

Intro BSM - JJC 2010

EL OQC

- 17

Top Down approach : Extra dimensions

Large Extra Dimensions : $R \gg 1/$ TeV= 10^{-17} cm gravity propagate in the entire bulk and SM fields stuck on a brane

• $r \ll R$: $V(r) = -\frac{m_1 m_2}{M_f^{N+2} r^{N+1}}$

• $r \gg R$: $V(r) = -\frac{m_1 m_2}{M_{pl}^2 r}$

→ Gravitation is feeble because ED are large $M_{pl}^2 = R^N M_f^{2+N}$ for M_f = TeV, need at least N = 3 $R = 10^{15}$ cm (N = 1), $R = 10^{-1}$ cm (N = 2), $R = 10^{-6}$ cm (N = 3).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Top Down approach : Extra dimensions

Large Extra Dimensions : $R \gg 1/$ TeV= 10^{-17} cm gravity propagate in the entire bulk and SM fields stuck on a brane

• $r \ll R$: $V(r) = -\frac{m_1 m_2}{M_f^{N+2} r^{N+1}}$

• $r \gg R$: $V(r) = -\frac{m_1 m_2}{M_{pl}^2 r}$

→ Gravitation is feeble because ED are large $M_{pl}^2 = R^N M_f^{2+N}$ for M_f = TeV, need at least N = 3 $R = 10^{15}$ cm (N = 1), $R = 10^{-1}$ cm (N = 2), $R = 10^{-6}$ cm (N = 3).

Kaluza Klein towers for $M^4 \times S_1$: a free massless particle in the 5D space can be expanded : $\Phi(x^{\mu}, z) = \sum \phi_n(x^{\mu})e^{inz/R}$

→ from the 4D point of view : tower of $\phi_n(x^\mu)$ with increasing mass $m_n^2 = p^\mu p_\mu = n^2/R^2$

Laura Lopez Honorez (ULB)

22 Novembre 2010 12 / 18

Small Radius

Large Radius

ELE DOG

Top Down approach : Extra dimensions

Small ED : Randall Sundrum, Warped extra dimensions

• metric $ds^2 = e^{-2ky} g_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$

 e^{-2ky} is the wrap factor decreasing along y at the origin of the hierarchy TeV- M_{pl} scale.

Top Down approach : Extra dimensions

Small ED : Randall Sundrum, Warped extra dimensions

- metric $ds^2 = e^{-2ky} g_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2 e^{-2ky}$ is the wrap factor decreasing along y at the origin of the hierarchy TeV- M_{pl} scale.
- Configuration of space time : 2 branes reside at y = 0 and $y = \pi R$, fixed points of a S_1/Z_2 orbifold

Top Down approach : Extra dimensions

Small ED : Randall Sundrum, Warped extra dimensions

- metric $ds^2 = e^{-2ky} g_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2 e^{-2ky}$ is the wrap factor decreasing along y at the origin of the hierarchy TeV- M_{pl} scale.
- Configuration of space time : 2 branes reside at y = 0 and $y = \pi R$, fixed points of a S_1/Z_2 orbifold
- We live on the brane at $y = \pi R$, a field of mass m_0 appear to have a physical mass $m(y) = e^{-ky}m_0$ \rightsquigarrow TeV mass scale $m(\pi R)$ is obtained from $m_0 = M_{pl}$ for $kR \sim \mathcal{O}(10)$
- no large hierarchies necessary all the mass scale are of the same order : k, 1/R, $\sim M_{pl}$ small extra dimensions $R \sim 1/M_{pl} \sim 10^{-33}$ cm
- new physics involved, see also talk of Vincent and Ludovica

Laura Lopez Honorez (ULB)

Supersymmetry

• quadratic corrections to the Higgs mass (almost) cancel out if for each fermion we have a complex scalar with the same quantum numbers :

EL OQA

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Supersymmetry

• quadratic corrections to the Higgs mass (almost) cancel out if for each fermion we have a complex scalar with the same quantum numbers :

$$\Delta m_H \propto (-\lambda_f + \lambda_S) \Lambda^2 \qquad \underbrace{}_{H} \qquad \underbrace{}_{f} \qquad \underbrace{}_{H} \qquad \underbrace{}_{H} \qquad \underbrace{}_{H} \qquad \underbrace{}_{H} \qquad \underbrace{}_{S} \stackrel{s}{\searrow} \underbrace{}_{S} \stackrel{s}{\swarrow} \underbrace{}_{S} \stackrel{s}{\swarrow} \underbrace{}_{S} \stackrel{s}{\boxtimes} \underbrace{}_{H} \stackrel{s}{\boxtimes} \underbrace{}_{S} \stackrel{s}{\boxtimes} \underbrace{}_{S} \stackrel{s}{\boxtimes} \underbrace{}_{H} \stackrel{s}{\boxtimes} \underbrace{}_{S} \stackrel{s}{\boxtimes} \underbrace{}_{$$

• Supersymmetry doubles the dof of the SM model MSSM

Standard Model particles and fields		Supersymmetric partners					
		Interactio	on eigenstates	Mass eig	enstates		
Symbol	Name	Symbol	Name	Symbol	Name		20 20 20 20
q=d,c,b,u,s,t	quark	\tilde{q}_L, \tilde{q}_R	squark	\tilde{q}_1, \tilde{q}_2	squark	IL A III II	L1 L2 L3. L41
$l = e, \mu, \tau$	lepton	\tilde{l}_L, \tilde{l}_R	slepton	\tilde{l}_1, \tilde{l}_2	slepton		
$\nu = \nu_e, \nu_\mu, \nu_\tau$	neutrino	$\tilde{\nu}$	sneutrino	$\tilde{\nu}$	sneutrino	u a e v _e	u a e v _e
g	gluon	\tilde{g}	gluino	\tilde{g}	gluino	C S 11 11	
W^{\pm}	W-boson	\tilde{W}^{\pm}	wino)			A CALLER AND	A THE H
H^{-}	Higgs boson	\tilde{H}_{1}^{-}	higgsino	$\tilde{\chi}_{1,2}^{\pm}$	chargino	t b τ v _t	Ĩ, Ĕ, ĩ, ỹ,
H^+	Higgs boson	\tilde{H}_{2}^{+}	higgsino				
В	B-field	\tilde{B}	bino y			,γ,Z,W≖	$\chi^{\pm}_{1}\chi^{\pm}_{2}$
W^3	W^3 -field	\tilde{W}^3	wino				
H_{1}^{0}	Higgs boson	\tilde{H}_{1}^{0}	higgsino	$\tilde{\chi}^{0}_{1,2,3,4}$	neutralino	9	9
H_2^0	Higgs boson	\tilde{H}_2^0	higgsino			G	5

2 Higgs doublets+ Gauge bosons+ SM fermions and their superpartners

Laura Lopez Honorez (ULB)

Supersymmetry

R parity has to be introduced for proton stability : R = (−1)^{3(B-L)+2s} like a Z₂ symetry → DM ! !

< < >> < <</>

< ∃ > <

3 1 1 N Q Q

Supersymmetry

- **R** parity has to be introduced for proton stability : $R = (-1)^{3(B-L)+2s}$ like a Z_2 symetry \rightarrow DM ! !
- gauge couplings corresponding to $SU(3)_c$, $SU(2)_L$, $U(1)_Y$ unify at the GUT scale $M_{GUT} \sim 10^{16}$ GeV

10 15 ¹⁰log 10 Va.

20

10

SU(3)

Supersymmetry

- **R** parity has to be introduced for proton stability : $R = (-1)^{3(B-L)+2s}$ like a Z_2 symetry \rightarrow DM ! !
- gauge couplings corresponding to $SU(3)_c$, $SU(2)_L$, $U(1)_Y$ unify at the GUT scale $M_{GUT} \sim 10^{16}$ GeV
- testing new physics that can be related to supersymmetry : see talks of Guillaume and Karim for CMS today and talks of Adrien for Atlas (friday)

More searches on new physics...

- David today for CMS : Methods of identification of the *τ* lepton and implications for searches of new physics
- Cosme on friday for LHCb : Search for BR $(B_s \rightarrow \mu^+ \mu^-)$

Program of the BSM Session

• Today Monday 22/11 :

9h00-9h30 Intro Laura Lopez Honorez 9h30-10h00 DRIEU LA ROCHELLE, Guillaume : Signature de Higgs Supersymmetriques au delà du MSSM 10h00-10h35 DAVID, BODIN : CMS, Méthodes d'identification du lepton τ

11h05-11h30 : DERO, Vincent : *CMS*; étude du spectre de masse invariante des paires e^+e^- 11h30-11h55 : KARIM, mehdi : *CMS*, Recherche de Supersymmetrie avec violation de R-parité 11h55-12h25 : DEGEE, Audrey : approche géometrique pour étudier 2HDM

• Friday 26/11

15h00-15h35 : MAURICE, Emilie : *LHCb, Nouvelle physique dans les désintégrations* $B_s \rightarrow J/\psi\phi$ 15h35-16h00 : ADROVER PACHECO, Cosme : *LHCb, Search for* $BR(B_s \rightarrow \mu^+\mu^-)$

16h30-17h05 :LUDOVICA, Aperio Bella : *Atlas, searches for high mass dilepton resonance* 17h05-17h30 :RENAUD, Adrien Altas : *Recherche de Supersymmetrie au LHC*

This is the End Thank you for your attention ! !

Laura Lopez Honorez (ULB)

Intro BSM - JJC 2010

22 Novembre 2010 18 / 18

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Backup

Laura Lopez Honorez (ULB)

Intro BSM - JJC 2010

22 Novembre 2010 19 / 18

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

gauge theory based on the $SU(3) \times SU(2) \times U(1)$ gauge group with the Lagrangian

$$\mathcal{L}_{SM} = -\frac{1}{4g'^2} B_{\mu\nu} B^{\mu\nu} - \frac{1}{2g^2} \operatorname{Tr}(W_{\mu\nu} W^{\mu\nu}) - \frac{1}{2g_s^2} \operatorname{Tr}(G_{\mu\nu} G^{\mu\nu}) + \bar{Q}_i i D Q_i + \bar{L}_i i D L_i + \bar{u}_i i D u_i + \bar{d}_i i D d_i + \bar{e}_i i D e_i + (Y^{ij}_u \bar{Q}_i u_j \tilde{H} + Y^{ij}_d \bar{Q}_i d_j H + Y^{ij}_l \bar{L}_i e_j H + \text{h.c.}) + (D_\mu H)^{\dagger} (D^\mu H) - \lambda (H^{\dagger} H)^2 - m^2 H^{\dagger} H$$
(1)

Intro BSM - JJC 2010

EL OQC

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

This is the true End

Laura Lopez Honorez (ULB)

Intro BSM - JJC 2010

22 Novembre 2010 21 / 18

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □