Recherche d'ondes gravitationelles associées aux sursauts gamma

Michał Wąs

Laboratoire de l'accélérateur linéaire Collaboration Virgo

Journées Jeunes Chercheurs 2010, Angers

Physique des ondes gravitationnelles

- Relativité Générale
- Détecteurs d'ondes gravitationnelles

O Sursauts Gamma

- Astrophysique
- Analyse de données

Relativité Générale Détecteurs d'ondes gravitationnelles

Relativité Générale → Ondes gravitationnelles

• Relativité Générale : l'espace-temps est courbé, courbure décrite par la métrique

$$\mathrm{d} s^2 = g_{\mu\nu} \mathrm{d} x^\mu \mathrm{d} x^\nu,$$

la métrique est générée par la matière/énérgie (équations d'Einstein)

$$G_{\mu
u}=rac{8\pi G}{c^4}T_{\mu
u}$$

• Ondes gravitationnelles (OG) linéarisation de la RG en champ faible

 $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}, \quad h_{\mu
u} \ll 1 \quad \eta_{\mu
u}$ – métrique plate de Minkowski

Réécriture des équations d'Einstein dans le vide

$$\Rightarrow \partial^{\sigma} \partial_{\sigma} h_{\mu\nu} = \mathbf{0}$$

Les ondes gravitationnelles se propagent à la vitesse de la lumière • A priori 10 degrés de liberté pour $h_{\mu\nu}$ (symétrique) En réalité, contraintes de jauge \rightarrow 2 polarisations $h_{\mu\nu} = h_+ A_{\mu\nu} + h_\times B_{\mu\nu}$

Relativité Générale Détecteurs d'ondes gravitationnelles

Source d'ondes gravitationnelles

Luminosité (puissance émise) en OG

$$\mathcal{L}_{OG} = \frac{G}{5c^5} \left\langle \overleftarrow{Q}_{\mu\nu} \overleftarrow{Q}^{\mu\nu} \right\rangle \simeq \frac{c^5}{G} \underbrace{\epsilon^2}_{\text{asymétrique}} \underbrace{\left(\frac{R_s}{R}\right)^2}_{\text{compact}} \underbrace{\left(\frac{v}{c}\right)^6}_{\text{relativiste}}$$

- Une bonne source est :
 - asymétrique $\rightarrow \epsilon = \frac{l_{xx} l_{yy}}{l_{zz}} \sim 1$
 - compacte \rightarrow taille *R* proche du rayon de Schwartzschild R_s
 - mouvement relativiste v ~ c
- Source terrestre
 - ▶ barre de 1 tonne → pas compact
 - ► 50 tour par seconde, distance 1 m → pas relativiste
 - \Rightarrow amplitude $h \sim 10^{-35}$, flux $\sim 10^{-31}$ Wm⁻²...
- \Rightarrow Source astrophysique
 - Coalescence de 2 étoiles à neutron à 10 Mpc (quelques dizaines de galaxies)
 - ▶ amplitude $h \sim 10^{-21}$, flux $\sim 10^{-3}$ Wm⁻² → envisageable
 - $\bullet~NB$: rayon terrestre $\times~10^{-21}\sim$ noyau atomique

Physique des ondes gravitationnelles

Relativité Générale

Observation indirecte

Observation indirecte de rayonnement gravitationnelle

- Binaire d'étoile à neutron, \mathcal{L}_{OG}
- ⇒ Perte d'énergie d'un système binaire d'étoiles à neutrons
 - Mesure de la période de rotation par effet doppler sur ondes radios du pulsar

Relativité Générale Détecteurs d'ondes gravitationnelles

Propriété des ondes gravitationnelles

•
$$h_{\mu\nu} = h_+ A_{\mu\nu} + h_\times B_{\mu\nu}$$

- Les ondes gravitationnelles sont transverses
- Déforment un cercle de masses libres en une ellipse

⇒ observation OG ↔ mesurer la longueur différentielle entre deux bras orthogonaux

Relativité Générale Détecteurs d'ondes gravitationnelles

Principe de détection

Observer la variation relative de longueur de deux bras orthogonaux \Rightarrow interféromètre de Michelson

- miroirs suspendus (masses libres)
- Observe une seule polarisation

Relativité Générale Détecteurs d'ondes gravitationnelles

Signal observé

$$d(t) = \frac{\Delta L}{L} = F_{+}(\theta, \phi)h_{+}(t) + F_{\times}(\theta, \phi)h_{\times}(t) + \frac{n(t)}{n(t)},$$

- d(t) signal mesuré par photo-diode
- ΔL différence de longueur des bras sensibilité $\Delta L \lesssim 10^{-18} \, m/\sqrt{Hz}$
- L longueur des bras
- θ, ϕ direction dans le ciel de la source
- *h*₊(*t*), *h*_×(*t*) amplitude de l'onde gravitationnelle
- *F*₊, *F*_× − facteur d'antenne (géométrie),
 ↔ détecteur sensible à une seule polarisation
- n(t) bruit du détecteur

détecteur pas directionnel !

Relativité Générale Détecteurs d'ondes gravitationnelles

Réseau de détecteurs

Virgo

- OG partout pareil modulo temps de vol
- 3 détecteur → localisation dans le ciel par triangulation

Réseau mondial de détecteurs d'OG

⇒ Groupe de physique / données en commun entre tous les détecteurs

Relativité Générale Détecteurs d'ondes gravitationnelles

Difficulté principale \rightarrow le bruit

• Bruit coloré

Sources fondamentales de bruits

- Basse fréquence bruit sismique
- Fréquence intermédiaire bruit thermique
- Haute fréquence bruit de comptage de photons

Autres sources

• bruit de contrôle de l'instrument

• ...

 \Rightarrow Source visible jusqu'à $\sim 10 \, \text{Mpc}$

Relativité Générale Détecteurs d'ondes gravitationnelles

Difficulté principale \rightarrow le bruit

Distribution non gaussienne du bruit - "glitch"

Exemples :

- saturations de photo-diode
- défauts d'alignement (lumière diffusée sur des montures)
- bruits acoustiques
- stabilité de l'alimentation
- météo (orage, ...)

⇒ Très loin d'une distribution Gaussienne

Physique des ondes gravitationnelles

- Relativité Générale
- Détecteurs d'ondes gravitationnelles

O Sursauts Gamma

- Astrophysique
- Analyse de données

Astrophysique Analyse de données

Sursauts gamma

- Définition observationnelle → flash de rayon gamma
- Découverts par les satellites de surveillance pour les tests de bombes atomiques (70's)
- Deux populations
 - ► sursauts court ≤ 2 sec gammas à plus haute énergie
 - ► sursauts long ≥ 2 sec gammas à plus basse énergie

Astrophysique Analyse de données

Modèles de sursauts gamma

- Sursauts long
- ⇒ explosion d'étoile massive en rotation rapide (hypernova)
 - Sursauts courts
- ⇒ Coalescence d'une étoile à neutrons et d'un astre compact
 - Remplissent le cahier de charge : asymétrique, compact, relativiste
 - Émission en gamma : $\sim 10^{53}\,erg = 0.1\,M_{\odot}c^2$ en $\sim 1\,sec$
 - Problème : la plupart des sursauts sont à \sim 1 Gpc

Sursauts Gamma

Astrophysique

Ondes gravitationnelles associées

- Forme d'onde en grande partie connue
- Recherche par calque \Rightarrow

Forme d'onde, amplitude incertaines

500 1000 1500 2000 2500

-0.2

- Nombreux mécanismes d'émission
- Recherche cohérente \Rightarrow

time (sample)

-0.3

500 1000 1500 3000

time (somple)

Astrophysique Analyse de données

Méthode d'analyse cohérente

- "Chercher le même signal dans plusieurs détecteur"
- ⇒ Combinaison linéaire des données de plusieurs détecteurs

$$d_1(t) = h(t) + n_1(t)$$

 $d_2(t) = h(t) + n_2(t)$

$$d_1(t) - d_2(t) = n_1(t) - n_2(t)$$

$$d_1(t) + d_2(t) = 2h(t) + n_1(t) + n_2(t)$$

- Peu de a priori sur la forme d'onde
 - court \lesssim 1 sec
 - ► polarisation circulaire (h_+ et h_{\times} déphasé de $\pm \pi/2$)

Astrophysique Analyse de données

Décomposition temps-fréquence

Physique des ondes gravitationnelles Sursauts Gamma Astrophysique Analyse de données

Agglomérats de pixels en temps-fréquence

- Regrouper les 1% de pixel avec la plus grande amplitude en agglomérat
- Sommer l'énergie (carré de l'amplitude) sur les pixels de l'agglomérats
 - \rightarrow statistique de détection
- ⇒ candidats d'évènements ondes gravitationnelles

19/24

Somme

Différence

Physique des ondes gravitationnelles Sursauts Gamma Astrophysique Analyse de données

Recherche associée aux sursauts gamma

- Sursaut gamma observé par satellite (Swift, Fermi, ...) distribué à travers GCN : Gamma-ray bursts Coordinates Network
- Coïncidence entre sursaut gamma et événement OG fenêtre [-10, +1] min

Sursauts gamma \rightarrow temps et position dans le ciel connue

- Position → analyse cohérente plus simple (temps de vol et facteurs d'antennes connues)
- Temps connu \rightarrow moins de bruit de fond
- \Rightarrow Plus sensible d'un facteur \sim 2 qu'une recherche en aveugle

Astrophysique Analyse de données

Recherche associée aux sursauts gamma

Bruit de fond

- Analyse de données hors source donne l'estimation du bruit de fond
- Décaler en temps par des pas de 5 sec les données entre deux détecteurs

 \Rightarrow plus de réalisations de bruit de fond cohérent

- \blacktriangleright Habituel : estimation de bruit avec proba $\sim 10^{-3}$ "3 sigma"
- Faisable : estimation de bruit avec proba ~ 10⁻⁶ "5 sigma"

Limite supérieure

 Rajouter du signal simulé dans les données :

Quelle amplitude donne une statistique plus grande que celle observée dans 90% des cas ?

Astrophysique Analyse de données

Résultats 2005–2007

 Conversion amplitude ↔ énergie OG

$$\begin{split} h_{rss} &= \sqrt{\int (h_+^2(t) + h_\times^2(t)) \mathrm{d}t} \\ \frac{1}{D^2} &\simeq \frac{\pi^2 c^3}{G} \frac{f_0^2 h_{rss}^2}{E_{OG}} \end{split}$$

- Distance d'exclusion $\sim 15\,\text{Mpc}$
- Taux de sursauts gamma à l'intérieur de l'horizon
 - Sursauts long : 10⁻⁶ evts/yr
 - Sursauts sous-lumineux : 10⁻³ evts/yr

Limite inférieure sur la distance à la source pour $E_{OG} = 0.01 \text{ M}_{\odot}\text{c}^2$

20

distance (Mpc)

10

5

0

10

40

30

Astrophysique Analyse de données

GRB070201

Mazelts et al, arXiv :0712.1502

- Sursaut court, position reconstruite par les satellites, recouvre un bras de M31 (Andromède 770 kpc)
- pas de OG observée
- ⇒ Exclus coalescence de binaire dans M31, seuil de confiance > 99%
 - Compatible avec
 - Tremblement d'étoile à neutron dans M31
 - Coalescence de binaire derrière M31

ApJ 681(2) :1419-1430 (2008)

Conclusions

Sursauts gamma

- recherches plus sensibles aux OG
- interprétations astrophysiques des résultats
- Sensibilité des détecteurs actuels commence a être astrophysiquement pertinente
- Nouvelles données (2009–2010) en cours d'analyse
- Observation régulière d'ondes gravitationnelles en 2016 advanced Virgo & advanced LIGO ×10 en sensibilité, ×1000 en volume 1 evt par siècle → 1 evt par mois

Carte du ciel en ondes gravitationnelles

