

ElettroWeak WZ diboson production at LHC look for in the electron channels at CMS

- WZ in the Standard Model of Particle Physics
 - SM and EWK gauge group
 - TGC measurements
 - see backup: TGC at LEP and Tevatron
- WZ search at CMS
 - LHC and CMS detector:
 - \circ see backup: the CMS tracker and ECAL
 - \circ electron reconstruction principles
 - WZ channel:
 - production
 - signal topology
 - o analysis strategy
 - First results
 - Plans for the future

- WZ diboson associated production: allows for a wide physics research program
- SM test through precision measurements (TGC):
 - to compete with previous measurements at LEP and Tevatron
- On the road towards the Higgs search in a multi-lepton final state:
 - background to WW and (H->WW as well)
 - WZ+jets is background to ZZ
 - Z+jets is common background to ZZ->4l (H->ZZ)
- Benchmark for BSM senarios:
 - 31 + MET is a typical and clear signature
 - i.e. W'->WZ->31+ ME_T early exclusion at 95% C.L. at DO with 4.1fb^{-1}
- In the following: focus on electro-weak measurements

- Gauge symmetries are the "natural" requirement to build a theory:
- WZ associated production is predicted by the SM $SU_L(2) \times U_Y(1)$ gauge group:

$$\begin{array}{cccc} SU(2)_L & \longrightarrow & W^1_{\mu} , \ W^2_{\mu} , \ W^3_{\mu} \\ U(1)_Y & \longrightarrow & B_{\mu} . \end{array} + D_{\mu} \equiv \partial_{\mu} - igT^a A^a_{\mu} +$$

$$W_{\mu}^{1} = \frac{1}{\sqrt{2}} (W_{\mu}^{+} + W_{\mu}^{-})$$
$$W_{\mu}^{2} = \frac{i}{\sqrt{2}} (W_{\mu}^{+} - W_{\mu}^{-})$$
$$W_{\mu}^{3} = A_{\mu} \sin \theta_{W} + Z_{\mu} \cos \theta_{W}$$
$$B_{\mu} = A_{\mu} \cos \theta_{W} - Z_{\mu} \sin \theta_{W}..$$

$$\mathcal{L}_{YM} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} - \frac{1}{2} W^{+}_{\mu\nu} W^{\mu\nu}_{-} \qquad B_{\mu} = A_{\mu} \cos \theta_{W} - Z_{\mu} \sin \theta_{W} ...$$

$$+ ig \sin \theta_{W} \left(W^{+}_{\mu\nu} W^{\mu}_{-} A^{\nu} - W^{-}_{\mu\nu} W^{\mu}_{+} A^{\nu} + F_{\mu\nu} W^{\mu}_{+} W^{\nu}_{-} \right)$$

$$+ ig \cos \theta_{W} \left(W^{+}_{\mu\nu} W^{\mu}_{-} Z^{\nu} - W^{-}_{\mu\nu} W^{\mu}_{+} Z^{\nu} + Z_{\mu\nu} W^{\mu}_{+} W^{\nu}_{-} \right)$$

$$- \frac{g^{2}}{2} \left(2g^{\mu\nu} g^{\rho\sigma} - g^{\mu\rho} g^{\nu\sigma} - g^{\mu\sigma} g^{\nu\rho} \right)$$

$$\left[W^{+}_{\mu} W^{-}_{\nu} (A_{\rho} A_{\sigma} \sin^{2} \theta_{W} + Z_{\rho} Z_{\sigma} \cos^{2} \theta_{W} + 2A_{\rho} Z_{\sigma} \sin \theta_{W} \cos \theta_{W} \right) - \frac{1}{2} W^{+}_{\mu} W^{+}_{\nu} W^{-}_{\rho} W^{-}_{\sigma} \right]$$

assuming both C, P conservation -> 6 parameters describe the effective Lagrangian $L_{eff}^{WWV} = -i g_{WWV} \left[g_1^V (W_{\mu\nu}^{\dagger} W^{\mu} V^{\nu} - W_{\mu}^{\dagger} V^{\nu} W^{\mu\nu}) + k_V W_{\mu}^{\dagger} W_{\nu} V^{\mu\nu} + \frac{\lambda_V}{m_W^2} W_{\rho\nu}^{\dagger} W_{\nu}^{\mu} V^{\rho\nu} \right]$ $where \ V = \gamma, Z \ g_{WW\gamma} = e, \ g_{WWZ} = e \cot \theta_W$

- with $g^{\gamma_1} = 1$ imposed by electromagnetic gauge invariance
- deviation from SM described by $\Delta g_1^Z \equiv (g_1^Z 1), \Delta \kappa_Y \equiv (\kappa_Y 1), \Delta \kappa_Z \equiv (\kappa_Z 1), \lambda_Y, \lambda_Z$

• SM expectation $\Delta K_{\gamma} = \Delta K_{Z} = \Delta g_{1}^{Z} = \lambda_{\gamma} = \lambda_{Z} = 0$

- p-p collider (√s 7TeV):
 - elucidate EWK symmetry breaking (Higgs)
 - Higgs search up to 1TeV/c2
 - Precision measurements on SM
 - Search for new physics in the TeV energy scale

- Collision designed rate 40MHz:
 - ~20collisions/event -> ~ 1000 charged particles/25ns
- Detectors designed:
 - high granularity detectors with good time resolution
 - radiation hard materials

- CMS reference frame (r,η,φ):
 - pseudorapidity $\eta = -\ln(\tan(\theta/2))$, with θ polar angle
 - (x,y) transverse plane wrt beam and \vec{B} (pT, E_T)
- ENDCAPS BARREL ECA Ζ HCAL θ Tracke (SPD-SSD) (x, r) Superconductive Solenoid **IRON YOKE** 4Tesla Muon chambers

- At hadron colliders:
 - physics in the transverse plane is "under control"
- in the transverse plane
 - event pT = 0 (maximum event boost O(1GeV) = proton rest mass)

- It's a Compact muon solenoid since it's "small" with respect to its weight
- Choice of the magnet field drives the detector design

Detector requirements to meet

the LHC physics goals:

- good µ identification
- excellent energy resolution
- charge measurement

- Object reconstruction
 - response from different subdetectors:
 - quality cuts applied to select objects
 - isolation,
- def. MET = Missing transverse energy
 - MET = [Σ (E+H) Muons]_T
- neutrinos leave undetected

The electron reconstruction

- Electron = track + superCluster in ECAL
 - Energy is clusterized in a large ϕ window to account for
 - unconverted energy containment:
 ~97% into a matrix of 5x5 around the impact crystal
 - material budget in front of the ECAL: electron bremsstrahlung and photon conversions are enhanced (70% electron energy radiated by brehm. + 50% probability γ->e)
 - \circ B field further spreads along ϕ the energy deposited in ECAL
 - Seed finding (see next slide)
 - Electron tracking relies on the Gaussian Sum Filter algorithm: to deal with high material budget in a high magnetic field contest;
 - Allows for a tracker estimate of the energy lost by bremsstrahlung $f_{brem} = (p_{in}-p_{out})/p_{in}$
 - Accounts for non gaussian energy loss due to bremsstrahlung
 - Allows for an unbiased estimate of the track at each point
 - Electron preselection (association Tk-Scl)

- 2 different algorithms for electron reconstruction in CMS
- The starting point for the "ECAL driven" electron reconstruction is the seeding
 - Seed finding: matching strategy -> ECAL driven electrons
 - from SCluster, for both charge hypothesis
 - seeds are selected, if both the hits are found within reasonable windows around the expected position
 - \circ the beam spot position is the constraint for the 1^{st} hit search
 - $^{\circ}$ vertex z is computed wrt 1^{st} hit to look for the 2^{nd} one

	1st	windows	2nd windows				
	δz or δr_T	$\delta \phi$	δz	δr_T (PXF)	δr_T (TEC)	$\delta \phi$	
10 GeV/c	$\pm 5\sigma_z$	[-0.14;0.08] rad	±0.09 cm	± 0.15 cm	± 0.2 cm	$\pm 4 \text{ mrad}$	
35 GeV/c	$\pm 5\sigma_z$	[-0.05;0.03] rad	±0.09 cm	±0.15 cm	±0.2 cm	$\pm 4 \text{ mrad}$	

- particularly efficient for low p_T and converted photons

WZ at hadron collider

- reduced BR (1.5% if lepton = e,μ)
- (here: focuse on leptonic channel, $l = e, \mu$)

WZ signature

- Signal topology:
 - 3 isolated, high energy leptons
 - neutrino -> large MET

- What to look for/ benchmark kinematic variables
- Z (M = $91.1876 \pm 0.0021 \text{ GeV/c}^2$)
 - M: l⁺l⁻ pair with reasonable invariant mass (60GeV/c2 < MZ < 120GeV/c2, pT >15GeV/c)
- W (M = 80.398 ± 0.023 GeV/c²)
 - neutrino being undetected, large MET (MET > 25GeV)
 - 3rd high pT (>20GeV) lepton (e, μ) looked for to have the final state topologies (eee, ee μ , $\mu\mu$ e)
 - M estimated in the transverse plane: $M_T(W) = \sqrt{2 \cdot MET \cdot E_\ell (1 cos \Delta \phi_{MET,\ell})}$
 - \circ E_l = energy of the 3rd lepton
 - $\circ \Delta \phi(MET,I)$ = azimuthal separation between MET direction and 3rd lepton
 - \circ p_v = (MET, METx, METy, p_vz)

the analysis...

- In my analysis: $3l + MET (l = e, \mu)$ 1 electron explicitly required => eee, ee μ , $\mu\mu e$
 - MC reference:
 - signal WZ->31 (l = e, μ , τ)
 - Main backgrounds: Z+Jets, ZZ, TTBar, ZGamma, PhotonJet (final state topology as the signal one)
 - DATA: 35pb⁻¹ collected so far
- Z->ee selection survived events

... the analysis: $ee\mu$ channel

JJC Nov 2010 Arabella Martelli

2electron 1muon final state:

R

M(e+ e-) vs M_T

DPhi(MET-µ) vs pT(e+e-)

M_T vs MET

- DATA

WZ3I

Z+jet

2Z

900

120

80

100

140

160

TTBar+je

Photon+i

180 200

MET (GeV)

eeµ event display

- Prospective results (*Js* 14TeV)
 - 5σ significance on observation with < 350pb-1 at 95%CL:

- Preliminary results for > 7
 - Significance Scl = $\sqrt{2[(S + B) \ln(1 + S/B)]} S$

	Normalized to DATA Lumi			Normalized to 500pb ⁻¹			
	Signal	Tot Bkg	Scl	Signal	Tot Bkg	Scl	
eee	0,37	0,05	0,65	5,25	0,68	2,43	
ееµ	0,42	0,09	0,58	2,66	1,30	1,08	observation possible
μμе	0,42	0,66	0,20	1,19	9,38		within 2011
						-	

- Systematics understanding, to extrapolate a significance for observation
 - Efficiencies of selection
 - Background estimate from DATA:
 - o lack in statistic in the generated samples
 - simulated conditions different from DATA or not reliable
 - Zgamma: measure gamma->electron conversion rate in DATA with a T&P selection of Zgamma($\mu\mu\gamma$), use Z-> $\mu\mu\gamma$ MC sample for normalization
 - ZJets: measure jet->electron fake rate in a Di-jet triggerred sample, use a control region to estimate normalization

- About TGC measurements...
 - approach the "physics aspect of the measurement" (TGC)

Conclusions

- WZ production is a EWK process, consequence of the SU(2)xU(1) gauge group
 - WWZ TG vertex measurement through WZ final state

- WZ search at the CMS:
 - Leptonic final state (electron or muon)
 - At least 1 electron
- WZ analysis strategy was designed and a first look at 2010 DATA was given: first results
 - ~2.5 σ Scl significance estimated for 500pb⁻¹ in eee channel
 - Z+jets, TTBar most important backgrounds
 - look at DATA -> first WZ event in μ vee

backup: TGC (and WZ)

Δg^{Z_1}	[-0.051, 0.034]
Δk_{v}	[-0.105, 0.069]
٨ _٧	[-0.059, 0.026]

- WZ for instance: first observation at CDF with 1.1fb⁻¹ <u>arXiv:hep-ex/0702027v1</u>
 - current results (ICHEP 2010)

backup: CMS detector - the Tracker

INFN

• Tracking efficiency: $\epsilon > 99\%$ (µ), ~90% hadrons • Resolution: $\Delta pt/pt \sim 1-2\%$ ($\eta < 1.6$)

JJC Nov 2010

3electron final state: •

R

INFN

1electron 2muon final state: ٠

- Identify a Z candidate, than looking for a 3rd lepton
- Z-> ee
 - electron selections:
 - ID + Iso + NoConversion: VBTF with WP(95%)
 - ele pT: both ele pT > 15GeV
 - \circ $|\eta| < 2.5$ + crack region excluded
 - electron opposite charge invariant mass: 60GeV < MZ < 120 GeV
- Z-> mumu:
 - muon selections:
 - globalMuons & trackerMuon, VBTF ID
 - Iso: tkIsoRO3 < 3
 - pT: both muons pT > 20GeV
 - |η| < 2.4
 - muon opposite charge invariant mass: 60GeV < MZ < 120GeV</p>

backup: Selections W

- MET > 25GeV
- 3rd lepton required: electron for Z-> ee || Z-> mumu, muon for Z->ee
- 3rd = electron
 - selections:
 - ID + Iso + NoConversion: VBTF with WP(80%)
 - o ele pT > 20GeV
 - |eta| < 2.5 + crack region excluded
- 3rd = muon
 - selections:
 - globalMuons & trackerMuon, VBTF ID
 - Iso: (tkIsoR03 + emIsoR03 + hadIsoR03)/Pt < 0.15</p>
 - o pT: both muons pT > 20GeV
 - |eta| < 2.1