studying the universe's highest energy particles

Extracting Aerosol properties by the Central Laser Facility @ the Pierre Auger Observatory

Karim Louedec

Laboratoire de l'Accélérateur Linéaire Université Paris Sud, CNRS/IN2P3

November, 22th-27th, 2010

Karim Louedec (LAL)

Extracting Aerosol properties @ Auger

Outline

The Pierre Auger Observatory

- A hybrid astroparticle detector
- Description of the fluorescence detector
- Light scattering in the atmosphere

2 The CLF and its laser shots selection

- The Central Laser Facility
- Azimuthal ranges reached on the FD cameras
- Laser shots selection @ Los Leones

Extracting of the Aerosol Phase Function

- Extraction procedure of the Aerosol Phase Function (APF)
- Validation of the geometrical reconstruction
- Estimation of the aerosol parameters by a (3)-parameter fit
- And with the data...

Conclusions and To Do list

Detect the secondary particles produced in the shower via the Cherenkov light produced in the water <u>Lateral profile</u>

Karim Louedec (LAL)

 \implies Longitudinal profile

Karim Louedec (LAL)

A ground array with 1600 water tanks (SD)

- tank filled with 12 tons of water,
- 3 photo multipliers tubes (PMT) per tank,
- charged particles detection by the Cherenkov effect.

24 telescopes around the ground array (FD)

• the secondary particles ionize the atmosphere,

emission of fluorescence light seen by the telescopes in UV.

Karim Louedec (LAL)

Description of a fluorescence telescope

Karim Louedec (LAL)

Extracting Aerosol properties @ Auger

Light detection and atmosphere effect

(a) direct light contribution

(b) scattered light contribution

- multiple scattering contribution depends on aerosols *strongly...*
- ... but up to now in Auger, implemented *only* in "hard"

Light scattering by particles in the atmosphere

Mie scattering: $R \ge \lambda$

 \Rightarrow Aerosols (including dust or sand)

- total cross section: $\sigma_{\rm tot} \propto \lambda^{-\gamma}$, with γ the Angström parameter,
- $\bullet\,$ attenuation length Λ_a deduced from VAOD measurements,
- phase function $P_{\rm Mie}(\theta)$ from typical parametrizations or tabulated.

Up to now, the Aerosol Phase Function @ Auger

- measurements doable only between 30° and 150°,
- Rayleigh night \iff no aerosols.

S BenZvi et al, Astroparticle Physics 28 (2007) 312-320

Karim Louedec (LAL)

Extracting Aerosol properties @ Auger

A hybrid detector

Hybrid measurements

- calibration: $Signal(SD) \iff E_{calo}(FD)$,
- lower dependence to the hadronic models not know at UHE,
- full acceptance for $E \ge 3 \times 10^{18}$ eV.

A hybrid detector

Hybrid measurements

- calibration: $Signal(SD) \iff E_{calo}(FD)$,
- lower dependence to the hadronic models not know at UHE,
- full acceptance for $E\geq 3\times 10^{18}$ eV.

JJC 2010 @ Angers 10 / 36

Karim Louedec (LAL) Extracting Aerosol properties @ Auger

A hybrid detector

Hybrid measurements

- calibration: $Signal(SD) \iff E_{calo}(FD)$,
- lower dependence to the hadronic models not know at UHE,
- full acceptance for $E \ge 3 \times 10^{18}$ eV.

Karim Louedec (LAL)

Outline

The Pierre Auger Observatory

- A hybrid astroparticle detector
- Description of the fluorescence detector
- Light scattering in the atmosphere

2 The CLF and its laser shots selection

- The Central Laser Facility
- Azimuthal ranges reached on the FD cameras
- Laser shots selection @ Los Leones

3 Extracting of the Aerosol Phase Function

- Extraction procedure of the Aerosol Phase Function (APF)
- Validation of the geometrical reconstruction
- Estimation of the aerosol parameters by a (3)-parameter fit
- And with the data...

Conclusions and To Do list

Different setups dedicated only to the Atmospheric monitoring

LIDAR: Light Detection And Ranging

The Central Laser Facility (CLF)

- energy per pulse around 6.5 mJ, over 7 ns,
- wavelength fixed @ 355 nm (fluorescence band),
- zenithal: $\theta_{\text{CLF}} \in [0^o, 90^o]$
- azimuthal: $\phi_{\text{CLF}} \in [0^o, 360^o]$

Karim Louedec (LAL)

The Central Laser Facility and My FD shift

Karim Louedec (LAL)

Extracting Aerosol properties @ Auger

A new way to get the Aerosol Phase Function

Advantages of this technique

- check the uniformity of the aerosols in the whole observatory,
- monitoring of the APF doable all along the night,
- other aerosol parameters as the attenuation length (!)

Azimuthal ranges for the FD camera @ Los Leones

ē

Number of time slots @ Los Leones [100 ns]

F	6 5 4 3							
Zenithal angle for laser shot [dec		24	24	26	30	35	42	50
		20	21	23	27	33	42	53
		16	17	20	25	33	45	63
		12	14	17	25	37	59	105
	2	8	11	17	30	56	82	96
	1	5	8	26	47	61	75	88
- 06		⁰ Az	1 zimutha	al angle	for las	er shot	[degre	e] ⁶
[ee]	Largest scattering angles @ Los Leones [degree							

5	1							
it [de	6	36	37	38	40	44	48	53
er sho	5	35	36	38	41	45	51	57
or lase	4	34	35	38	43	49	57	68
igle fo	3	33	35	40	47	58	73	97
nal ar	2	32	36	45	61	83	95	96
Zenit	1	31	42	77	93	94	95	96
ģ		0 A	1 zimutha	al angle	for las	er shot	5 Ideare	el 6

Laser shots selection @ Los Leones

Laser shots selection @ Los Leones

A new approach to extract the recorded signal in the FD camera

- these shots were fired for the first time during my shift...
- remark: the accuracy on the FD azimuthal angle is only $\pm 0.2^o$

 \Longrightarrow Now, new CLF shots will be fired in the automatical CLF run for the next FD shifts

Outline

3

 The Pierre Auger Observatory A hybrid astroparticle detector Description of the fluorescence detector Light scattering in the atmosphere
 The CLF and its laser shots selection The Central Laser Facility Azimuthal ranges reached on the FD cameras Laser shots selection @ Los Leones
 Extracting of the Aerosol Phase Function Extraction procedure of the Aerosol Phase Function (APF) Validation of the geometrical reconstruction Estimation of the aerosol parameters by a (3)-parameter fit And with the data Conclusions and To Do list

Signal collected by the *i*th pixel in the FD camera

$$S_i = I_0 \times \langle T_{\text{Ray}} \rangle_{\Delta z_i} \times \langle T_{\text{Mie}} \rangle_{\Delta z_i} \times \left[\frac{P_{\text{Ray}}(\zeta)}{\langle \Lambda_{\text{Ray}} \rangle_{\Delta z_i}} + \frac{P_{\text{Mie}}(\zeta)}{\langle \Lambda_{\text{Mie}} \rangle_{\Delta z_i}} \right] \times \Delta z_i \times \langle \Delta \Omega_i \rangle_{\Delta z_i}$$

$\Lambda_X(h)$: attenuation lengths, or mean free paths

\implies probability of the traveled length before a scattering

$$\Lambda_{\rm X}(h) = 1/(N(h) \times \sigma_{\rm tot})$$

Molecular attenuation length

 $\Lambda_{\rm Ray}(h) = \Lambda_{\rm Ray}^0 \times \exp\left(h/h_{\rm Ray}^0\right), h_{\rm Ray}^0 \simeq 8.0 \text{ km } @ \text{ Malargüe level}$

 \rightarrow estimated by the weather stations (temperature, pressure)

Aerosol attenuation length

 $\Lambda_{\rm Mie}(h) = \Lambda_{\rm Mie}^0 \times \exp\left(h/h_{\rm Mie}^0\right), h_{\rm Mie}^0 \simeq 1.4 - 2.9$ km @ Malargüe

ightarrow estimated by vertical CLF shots and LIDARS

$T_{\rm X}(h)$: attenuation factors

 \Longrightarrow fraction of photons not yet scattered at the end of the travel

Toy case: Λ_X is constant

$$T_{\mathrm{X}}(h) = \exp\left[-(\ell_1 + \ell_2)/\Lambda_{\mathrm{X}}
ight]$$

True case: Λ_X changing

$$T_{\rm X}(h) = \exp\left[\frac{h_{\rm X}^0/\Lambda_{\rm X}^0}{\sin\theta_{\rm FD}} \left({\rm e}^{-h/h_{\rm X}^0} - 1\right)\right] \times \exp\left[\frac{h_{\rm X}^0/\Lambda_{\rm X}^0}{\cos(T\vec{M},\vec{z})} \left({\rm e}^{-h/h_{\rm X}^0} - 1\right)\right]$$

$P_{\rm X}(\zeta)$: phase function

 \implies probability of the scattering angle @ scattering $P_{\rm X}(\zeta) = (1/\sigma_{\rm X}) \times ({\rm d}\sigma_{\rm X}/{\rm d}\Omega)(\zeta)$

Molecular phase function: Rayleigh (MPF)

$$P_{\text{Ray}}(\zeta) = \frac{3}{16\pi} \left[1 + \cos^2 \zeta \right]$$

ightarrow known analytically ;-))

Aerosol phase function: Henyey-Greenstein (APF)

$$P_{\text{Mie}}(\zeta|g,f) = \frac{1-g^2}{4\pi} \left[\frac{1}{\left(1+g^2 - 2g\cos\zeta\right)^{3/2}} + f \frac{3\cos^2\zeta - 1}{2\left(1+g^2\right)^{3/2}} \right]$$

- ightarrow g: asymmetry of the phase function
- ightarrow f: strength of the backward peak

Parameters estimation with one example

Reconstruction of the laser shot with our own program

- laser shot axis in red,
- rejected pixels in gray, pixels used in the reconstruction in green.
- ⇒ A new reconstruction method pixel-by-pixel

Parameters estimation with one example

Rayleigh night: estimation of the source factor I_0

$$S_{i|\text{Ray}} = I_0 \times \langle T_{\text{Ray}} \rangle_{\Delta z_i} \times \left[\frac{1}{\langle \Lambda_{\text{Ray}} \rangle_{\Delta z_i}} P_{\text{Ray}}(\zeta) \right] \times \Delta z_i \times \langle \Delta \Omega_i \rangle_{\Delta z_i}$$

 \Longrightarrow Each ith pixel gives a I_0^i value: $\mathsf{I}_0 = \langle I_0^i
angle$

Karim Louedec (LAL)

Extracting Aerosol properties @ Auger

Extracting procedure of the Aerosol Phase Function

Reconstruction procedure

- **1** light collection in each pixel *i* in green is extracted: S_i ,
- 2 for each *i*th pixel, S_i is divided by the correction factors and by its source factor I₀: we get S_i → S'_i(g, f, Λ⁰_{Mie}, h⁰_{Mie}),
- a 4-parameter fit can be applied to estimate the aerosol parameters.

We simulate expected profiles for each parameter configuration, then a χ^2 test is runned to estimate the optimized parameters

Validation of the geometrical reconstruction

Karim Louedec (LAL)

Extracting Aerosol properties @ Auger

Aerosol parameters estimation by a (3)-parameter fit @ Los Leones

- the shot (3^o, 6^o) does not draw the aerosol backward peak
 → f value is fixed at 0.4
- the asymmetry parameter
- the aerosol attenuation length
- the vertical aerosol scale

- $: g_{H-G} \in [-1, 1],$
- : $\Lambda^{0}_{Mie} \in ~]0,100\,000]$,

:
$$h_{Mie}^0 \in [0, 5000].$$

First results from the 3-parameter fit (Preliminary)

- not very sensitive to the vertical aerosol scale (shots at low altitude),
- systematic effect on the *g* estimation ?

And with the data...

Ø

Outline

The Pierre Auger Observatory A hybrid astroparticle detector Light scattering in the atmosphere The CLF and its laser shots selection The Central Laser Facility Azimuthal ranges reached on the FD cameras Laser shots selection @ Los Leones **Extracting of the Aerosol Phase Function** Extraction procedure of the Aerosol Phase Function (APF) Validation of the geometrical reconstruction Estimation of the aerosol parameters by a (3)-parameter fit And with the data **Conclusions and To Do list**

Conclusions

- selection of laser shots done and they are scheduled for the next runs,
- after the Higgs tracking, here it is the big aerosols tracking.

To Do list

- in the next days, systematics (?) and first try of the method on CLF data set for laser shots (3^o,±6^o),
- in the next weeks, development of our own APF parametrization derived from the Ramsauer approach (see JRJC'09 proceeding),
- *in the next months*, make the link with the Multiple Scattering parametrizations in Offline (collaboration with a MS code already developed).

⇒ On the way of a **complete** aerosol monitoring *(complementary to other atmospheric measurements @ Auger)*

A workshop to promote interdisciplinary science at the Auger observatory.

Interdisciplinary Science @ the Auger Observatory: from Cosmic Rays to the Environment

A workshop to promote interdisciplinary science at the Pierre Auger Observatory in Western Argentina

18-19th April 2011

Centre for Mathematical Sciences University of Cambridge

To register and for more information go to www.ncas.ac.uk/isATao

Professor Alan Watson FRS Department of Physics and Astronomy University of Leeds a.a.watson@leeds.ac.uk Dr Gavin Phillips National Centre for Atmospheric Science University of Leeds g.phillips@leeds.ac.uk Web:www.ncas.ac.uk

Extracting Aerosol properties @ Auger