

Prominent expectations from 3DIT for the Detectors at the International Linear Collider (ILC)

Marc Winter (IPHC-Strasbourg)

related talks: R. Yarema, L. Andricek, M.Demarteau

▷ More information on ILC Web site: http://www.linearcollider.org/cms/

CONTENTS

• What is the ILC project ?

- What are the scientific goals which may benefit from 3DIT ?
- Concrete applications of 3DIT to ILC (charged) particle detectors
- Summary & Outlook

• ILC \equiv next large scale accelerator after LHC :

- ▷ it is an electron positron linear collider : c.m. energy up to 1 TeV ; 31 km long site;
- ▷ it will deepen discoveries made at LHC and extend the experimental sensitivity to new phenomena underlying the history of Universe (laws of Nature) and its present mysteries (Dark Matter, Dark Energy)

• ILC design expected to be technically ready for construction \leq 2012 (... R&D started \geq 10 years ago ...)

- ILC is a high precision machine :
 - ▷ electron positron collisions are relatively background free
 - > physics conditions of elementary interactions are particularly well defined and tunable
- \Rightarrow Very high precision/sensitivity studies accessible if detectors are extremely sensitive

- ILC is a high precision machine :
 - ▷ electron positron collisions are relatively background free
 - > physics conditions of elementary interactions are particularly well defined and tunable
- \Rightarrow Very high precision/sensitivity studies accessible if detectors are extremely sensitive

SD Integrated Technologies may help us to reach the ultimate limit in precision and sensitivity

- Experiments are designed to allow detecting and measuring energy, momentum, spatial origin, etc, of nearly all particles produced in the collisions of interest
- Intense R&D programme going on all over the world on detector concept and detection technologies
- 9 French laboratories involved (8 IN2P3, 1 CEA) :
 - Calorimetres : HCAL, ECAL, VFCAL IPN-Lyon, LAL-Orsay, LLR-Palaiseau, LPSC-Grenoble, LAPP-Annecy, LPC-Clermont
 - Tracking detectors : TPC, SIT, VTX LPNHE-Paris, DSM/DAPNIA-Gif/Yvette, LPSC-Grenoble, IPHC-Strasbourg

- Experiments are designed to allow detecting and measuring energy, momentum, spatial origin, etc, of nearly all particles produced in the collisions of interest
- Intense R&D programme going on all over the world on detector concept and detection technologies
- 9 French laboratories involved (8 IN2P3, 1 CEA) :
 - Calorimetres : HCAL, ECAL, VFCAL IPN-Lyon, LAL-Orsay, LLR-Palaiseau, LPSC-Grenoble, LAPP-Annecy, LPC-Clermont
 - Tracking detectors : TPC, SIT, VTX LPNHE-Paris, DSM/DAPNIA-Gif/Yvette, LPSC-Grenoble, IPHC-Strasbourg

► 3D Integrated Technologies are predominantly attractive for Charged Particle Tracking Detectors → VTX, SIT, TPC → Pixels !!!

High Resolution Pixel Detectors for Charged Particle Detection

- ILC physics requires finding evidence of very short lived particles which decay \gtrsim 100 μm away from the Interaction Point (e.g. Higgs ightarrow charmed mesons) , inside the vacuum beam pipe (R \sim 15 mm)
 - ← reconstruct trajectories of electrically charged daughter particles with high resolution pixel detectors installed as close as possible to the Interaction Point

 Pixels close to beam line (~ 1−2 cm) are exposed to high rate of backgrounds → saturation, irradiation

ic

- Present pixel technologies have limitations which forbid coming as close to the IP as ambitionned
 - \hookrightarrow 3DIT are expected to allow approaching much closer to the Interaction Point

• How to achieve high spatial resolution : small pixels (pitch) and reduced material (\equiv weight)

$$\,\, \hookrightarrow \,$$
 Figure of merit : $\sigma_{f ip} = {f a} \oplus {f b}/{f p_t} \qquad
ightarrow \,$

b ($\mu m \cdot GeV$) **a (***µm***) Accelerator** LEP 25 70 **SLD** 8 33 LHC 12 70 **RHIC-II** 14 12 ILC < 5 < 10

b governs low momentum (\sim 30 % particles < 1 GeV/c) **a** governs high momentum

• Expectations from 3DIT :

- \diamond high degree of functionnality integration in very small pixels $ightarrow {f a} \searrow$
- \diamond thinning and connection technologies allowing very low material budget ightarrow \mathbf{b} \searrow

- Goal \equiv achieve very fine grained and thin pixels with fast and sensitive decision capacities
 - $\diamond~$ ILC time structure includes 5, $\sim~$ 1 ms long, "trains" made of $\sim~$ 3000 bunch crossings / second
 - \rightarrowtail only a few contain relevant Physics info. but all contain large amounts of Background \rightarrowtail remove them !

♦ Integrate in each pixel :

for zero suppression, ADC and time stamp (bunch crossing nb)

Today : CMOS pixels with shaping + discri. CCD pixels with memo. & delayed r.o. \rightarrow **Tomorrow :** 3D pixels

- Minimise multiple scattering inside detector material wherever possible (b \searrow)
 - → thickness, amount and choice of material for mechanical support, gluing, electrical connexions, thermal conductivity, power dissipation (avoid active cooling), ...
- Goal : < 0.2 % radiation length / layer (including chip + support + services) (\Leftrightarrow < 200 μm of silicon)
- **Presently** < 3 % seems achievable (STAR vertex detector)
- STAR ladder : kapton cable contributes with 0.090 % and carrier with 0.110 % of radiation length
 - \Rightarrow replace them with aluminised CVD diamond ?

 \hookrightarrow bonus in thermal transport

- (CMOS) Sensor fabrication yield is a concern
 ⇒ diced sensors prefered to stitched sets of 5–10 sensors
- \hookrightarrow inactive zones (\gtrsim 40 μm wide) at sensor edge from dicing

 \Rightarrow can these zones be reduced to \lesssim few μm with plasma etching ?

- Minimise multiple scattering inside detector material wherever possible (b \searrow)
 - → thickness, amount and choice of material for mechanical support, gluing, electrical connexions, thermal conductivity, power dissipation (avoid active cooling), ...
- Goal : < 0.2 % radiation length / layer (including chip + support + services) (\Leftrightarrow < 200 μm of silicon)
- **Presently** < 3 % seems achievable (STAR vertex detector)
- STAR ladder : kapton cable contributes with 0.090 % and carrier with 0.110 % of radiation length
 - \Rightarrow replace them with aluminised CVD diamond ?

 \hookrightarrow bonus in thermal transport

(CMOS) Sensor fabrication yield is a concern
 ⇒ diced sensors prefered to stitched sets of 5–10 sensors

 \hookrightarrow inactive zones (\gtrsim 40 μm wide) at sensor edge from dicing

 \Rightarrow can these zones be reduced to \lesssim few μm with plasma etching ?

► 3D Integ. Techno. include thinning and dicing capacities of great interest

ground.

- Provided signal identification (zero suppression) and formatting can be achieved right near the sensing volume, pixels can even be used on large areas, translating into improved spatial and temporal resolution (*watch power consumption and material budget* !)
- Sub-Detectors evolving towards pixel sensing :
 - ♦ Si strip detectors \rightarrow 3D Pixel Arrays (LPNHE)

ic

- ♦ TPC read-out system → pixellised anodes (TimePix) combined with µMegas chambers (LAL, DAPNIA)
- ◇ VFCAL (5–30 mrad) → radiation hard pixels ≥ 10⁵ e⁺e⁻ pairs (5 GeV) per μs ⇒ 3D integrated read-out would improve SNR by removing bump bondings & long cables

(LAL)

- ILC provides a framework for very challenging R&D on 3DIT at the world wide scale
 ⇒ unprecedented performances expected
- The R&D addresses two areas: **Pixel** and **System** integration performances
- Time line of ILC allows for two steps :

> evaluate the R&D potential for ILC (together with LHC activity)

> contribute to technology evolution (*Ex: specific designs, prototype characterisation*)

 \Rightarrow R&D supported by large E.U. programme

● Numerous spin-offs → imaging (see talk by R.Barbier)

- ILC provides a framework for very challenging R&D on 3DIT at the world wide scale
 ⇒ unprecedented performances expected
- The R&D addresses two areas: **Pixel** and **System** integration performances
- Time line of ILC allows for two steps :

> evaluate the R&D potential for ILC (together with LHC activity)

> contribute to technology evolution (*Ex: specific designs, prototype characterisation*)

 \Rightarrow R&D supported by large E.U. programme

• Numerous spin-offs >>>> imaging (see talk by R.Barbier)

Great opportunity to work together for the benefit of fundamental science and technology