

Potential projects based on 3DIT for the ILC Detectors

Marc Winter (IPHC-Strasbourg)

related talks: R. Yarema, L. Andricek, M.Demarteau

▷ More information on ILC Web site: http://www.linearcollider.org/cms/

- Integration of data processing in small pixels
- System Integration problems addressed to 3DIT
- Application of 3DIT to light silicon "strip" trackers
- Application of 3DIT to the pixellised read-out of a TPC
- Application of 3DIT to a small (beam monitor + shallow angle phys.) calorimetre
- Summary & Outlook

p-type low-resistivity Si hosting n-type "charge collectors"

signal created in epitaxial layer (low doping): Q ~ 80 e-h / µm → signal ≤ 1000 e⁻
charge sensing through n-well/p-epi junction
excess carriers propagate (thermally) to diode with help of reflection on boundaries with p-well and substrate (high doping)

Specific advantages of CMOS sensors:

- \diamond Signal processing μ circuits integrated on sensor substrate (system-on-chip) \mapsto compact, flexible
- \diamond Sensitive volume (\sim epitaxial layer) is \sim 10–15 μm thick \longrightarrow thinning to \sim 30–40 μm permitted
- ♦ Standard, massive production, fabrication technology → cheap, fast turn-over
- ♦ Room temperature operation

- \bowtie Very thin sensitive volume \rightarrow impact on signal magnitude (mV !)
- ► Use of P-MOS transistors difficult and exposed to drawbacks
- ⋈ Commercial fabrication (parameters)
 - \hookrightarrow Impact on : sensing performances (CCE),

design of signal processing μ circuits (nb of metal layers), radiation tolerance

- Split signal collection and processing functionnalities :
 - Tier-1: charge collection system
- Tier-2: analog signal processing
- Tier-3: mixed signal processing
- Tier-4: digital signal processing
- Tier-5: signal extraction (optical ?)

- Use best suited technology for each Tier :
 - Tier-1: epitaxy, deep N-well ? Tier-2 & -3: analog, low leakage current, process (nb of metal layers)
 - Tier-4 & -5 : digital process (nb of metal layers)

• Labs involved : IPHC-Strasbourg, LPSC-Grenoble, CEA/DAPNIA-Gif, IPN-Lyon

- Minimise multiple scattering inside detector material wherever possible (b \searrow)
 - → thickness, amount and choice of material for mechanical support, gluing, electrical connexions, thermal conductivity, power dissipation (avoid active cooling), ...
- Goal : < 0.2 % radiation length / layer (including chip + support + services) (\Leftrightarrow < 200 μm of silicon)
- **Presently** < 3 % seems achievable (STAR vertex detector)
- STAR ladder : kapton cable contributes with 0.090 % and carrier with 0.110 % of radiation length
 - \Rightarrow replace them with aluminised CVD diamond ?
 - \hookrightarrow bonus in thermal transport
- (CMOS) Sensor fabrication yield is a concern
 ⇒ diced sensors prefered to stitched sets of 5–10 sensors
- \hookrightarrow inactive zones (\gtrsim 40 μm wide) at sensor edge from dicing
 - \Rightarrow can these zones be reduced to \lesssim few μm with plasma etching ?

- Minimise multiple scattering inside detector material wherever possible ($\mathbf{b}\searrow$)
 - → thickness, amount and choice of material for mechanical support, gluing, electrical connexions, thermal conductivity, power dissipation (avoid active cooling), ...
- Goal : < 0.2 % radiation length / layer (including chip + support + services) (\Leftrightarrow < 200 μm of silicon)
- **Presently** < 3 % seems achievable (STAR vertex detector)
- STAR ladder : kapton cable contributes with 0.090 % and carrier with 0.110 % of radiation length
 - \Rightarrow replace them with aluminised CVD diamond ?
 - \hookrightarrow bonus in thermal transport
- (CMOS) Sensor fabrication yield is a concern
 ⇒ diced sensors prefered to stitched sets of 5–10 sensors

 \hookrightarrow inactive zones (\gtrsim 40 μm wide) at sensor edge from dicing

 \Rightarrow can these zones be reduced to \lesssim few μm with plasma etching ?

► 3D Integ. Techno. include thinning and dicing capacities of great interest

clock, control, JTAG, power,

ground.

- TPC read-out via µMegas (signal amplification in gas) combined with pixellised anode plane hosting integrated signal processing µcircuits (TimePix)
 - \hookrightarrow Each pixel (55×55 μm^2) contains μ circuits for pre-amp & shaping, discri., 14-bit counter, etc.
- 3DIT expected to allow :
 - ◇ reduce complexity and improve performances
 of signal processing µcircuits
 - reduce material budget of TPC end-plate
 - ◇ reduce thickness of end-plate (\equiv gap between TPC and Si detector behind end-plate)
- Objectives recover those for other applications of the chip (e.g. imaging)

- R&D to make Si-strip detectors evolve towards higher granularity and lower material budget
 - \rightarrowtail introduce alternated p- and n-type finger-shaped implants inside sensitive volume

 \hookrightarrow relies on via technology

Premier module avec 3 détecteurs TOB de CMS Une carte FE avec lecture basée sur VA1 (512 v) Adaptateur de pitch entre module et carte de lecture

• 3DIT expected to allow :

- ◊ improve read-out speed (ordre of mag.)
- ◊ improve radiation tolerance
- ◊ reduce material budget
- ◊ larger active zone (active edges, etc.)

	3D	Planar
Q collection path	50 μm	300 μm
$V_{Depletion}$	< 10 V	70 V
Edge sensitivity	10 μm	500 μm
Q collection time	1–2 ns	10–20 ns

- Small calorimetre installed near the beam pipe (5–30 mrad)
- Detect very energetic prompt electrons while swamped by gigantic electro-magnetic background from the beam
 withstand O(1) MGy/yr !!!
- Provide fast (O(μs) info to beam monitoring system
- 3DIT expected to allow :
 - ◇ reduce complexity and improve performances of signal processing µcircuits (avoid bump-bonding, cables, a.s.o.) integrated right behind the sensitive volume (e.g. diamond, AsGa)
 - ◊ reduce effects of bulk damage (cables, connectics)
 - reduce material sensitive to radiation
- Objectives recover those of R&D for LHC (fast and rad. hard)

Forward Region Design

• several ILC groups are very concerned by the evolution of 3DIT (\gtrsim 2015)

>>> Expertise in Design and Characterisation

 \rightarrow how can they contribute to the 3DIT devt?

• 2 areas where effort can be invested (substantial overlap with LHC, CLIC):

 \triangleright Pixel & μ circuit integration \rightarrow design kits, multiproject runs, rad. hard design ?

 \triangleright System integration \rightarrow studies of thinning & dicing, rad. hard material & fab. process ?

- 2 types of activities in parallel :
 - \triangleright Technology surveys \rightarrow we need to appreciate where we stand w.r.t. 3DIT

 \triangleright Prototyping \rightarrow design chips, make light material supports, dice chips, study connecting thinned sensors on thin mechanical supports, etc.

- Most activities supported by a large scale E.U. programme: *EUDET/FP6 & its future/FP7*
- Combine effort with world wide R&D for ILC and with spin-offs (*imaging applications, etc.*)

- 1. Hermeticity : efficient electron veto in high background region $\rightarrow 10^5$ channels / 200 msec
- 2. Bunch-to-bunch luminosity monitoring and feedback \rightarrow 3000 channels / 100 nsec

