

CATHARE 2 V2.5_2: a unique version for various applications

1

Focus on « CATHARE-Na »

Discussion on « CATHARE-Pb »

Visite ENEA 16/02/2010

CATHARE 2 V2.5_2: a single version for various applications

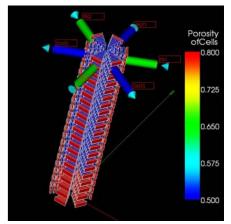
Context

Supercritical Lig Experimental re Nuclear propulsi 	Gas Fast Reactors, Very Hig ht Water Reactor, Sodium I <mark>actors</mark> : JHR, CABRI, OSIR	Fast Reactor) SIS	
 Need of a syst Describe the circuits Design and op Incidents and 	em code to perform ex thermal hydraulics of the w timisation of systems accidents analyses for plan	ploratory TH simulations hole plant, primary and secondary	
V2.5	V2.5_1	V2.5_2	
2003	2005	2008	
SCAR simulator	Containment modelling	Multi-purpose multi-reactor concept version	
	Gas Cooled Reactors	GenIV: GCR,SFR, SCWR Cryogenic fluids	Transformer

CEC V2.5_2 a multi-purpose multi-reactor concept version

One unique code version for all the applications

- New capabilities integrated as independent options
 - Ex: option « single-phase »
- Benefit from a maximum reusability


Inumerical reliability, existing basic modeling features well consolidated, GUITHARE...

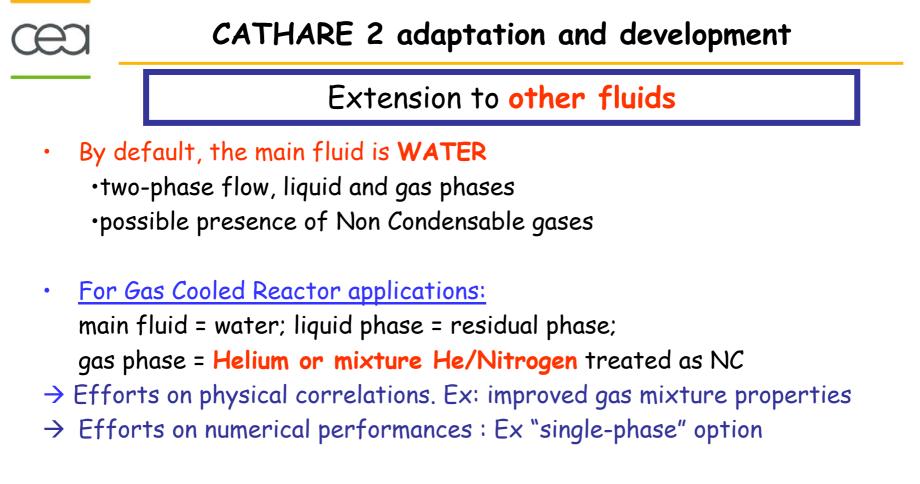
Minimize development and maintenance costs

Minor modifications of existing capabilities and addition of some new features for each application

> Unique team for maintenance and user support

Same stringent procedures for quality assurance
 Non regression tests, portability tests, extensive documentation

4


A generic development methodology

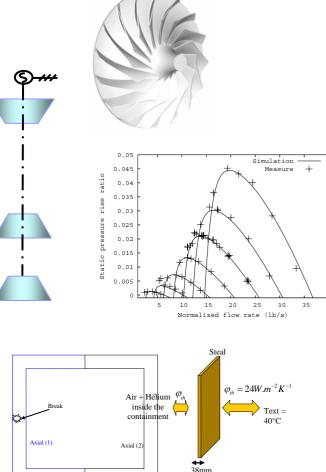
- List the common methods and functionalities

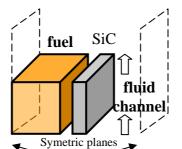
 a common thermal hydraulic kernel to be shared
- List the functionalities specifically devoted to one particular application \rightarrow can be shared
 - \rightarrow can be stored in private libraries (to insure the confidentiality)

The major differences between the applications:

- fluid and closure laws
- components and correlations

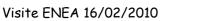
6

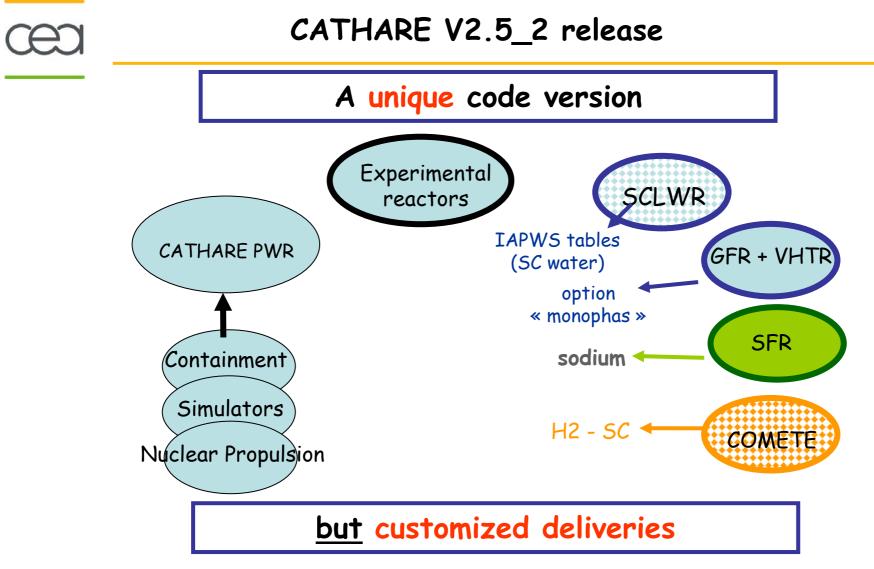

• For other applications:


Visite ENEA 16/02/2010

Possibility to choose an other fluid by circuit: Sodium, Supercritical water (IAPWS tables), H2,...

thermodynamics properties and associated closure laws implemented in specific libraries


Specific components and correlations



....

- OD turbomachinery module (circulator axial and radial type, turbine, shaft, generator)
- Electro-magnetic pump model
- Neutron kinetics feedback model specific for each concept
- Physical correlations (gas properties, gas mixture, specific components correlations (HX)...)

development of an automatic release procedure to select « private » libraries according to access rights

Fluid libraries, Specific correlations, Libraries for pump and TM characteristics

Focus on CATHARE « Na »

•OASIS: system code used in the past for sodium calculations

·phase 1 (2005-2006)

First developments and feasibility calculations (comparison with OASIS on SMFR calculations)

•Implementation of the thermodynamical properties and physical correlations

- •Adaptation of the kinetics and fuel models
- •First CATHARE modeling of SMFR reactor and comparison calculations with OASIS: Loss of external and internal pumps (ULOF) Power transient (UTOP)

•phase 2 (2007)

Additional developments and validation calculations

1st modeling of SPX1: 1st feasibility calculation (SCRAM)
Release of a 1rst CATHARE-Na version

•phase 3 (2008 ...

adaptation and use of CATHARE for innovative SFR designs

Sodium thermodynamic and transport properties

• Physical laws :

wall heat transfers, pressure losses in the core.

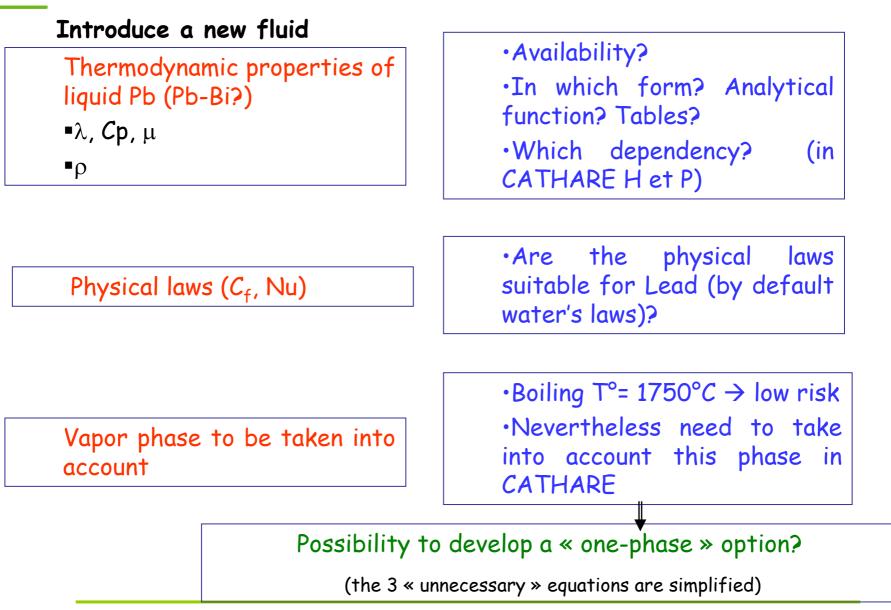
•2 simplified models of Electro Magnetic pumps:

proportional model, linear model with induction

Modeling of specific feedback reactivities:

Differential thermal expansion of core vessel and internals, control rods mechanism thermal expansion, change in the compacity of the core related to contact pads...

•Improvement of CATHARE2 efficiency :


- Numerical reliability
- Non condensable gases treatment

• New needs (models, components, ...)?

Discussions on « CATHARE-Lead »

14

new components?	
Ex: pump-SG integrated	
• What are the major physical phenomena?	
Ex: natural convection to	
remove decay heat	
-	

• the structure « new fluid » exists in CATHARE 2 \rightarrow ++

•Is there any system code available to "retrieve" the know-how ? Or to make some benchmark?

What about availability of experimental data on lead? Available for CATHARE-Pb validation?

•What are the timing constraints?