

COUPLAGE NEUTRONIQUE - THERMOHYDRAULIQUE APPLICATION AU RÉACTEUR À NEUTRONS RAPIDES REFROIDI À L'HÉLIUM

Florian VAÏANA

Thèse dirigée parFabien PERDULaboratoireCEA Grenoble DEN/DER/SSTH/LMDLDirecteur de thèseRoger Brissot (LPSC/IN2P3)

Plan de l'exposé

Généralités

- Neutronique
- Thermohydraulique
- Physique du couplage

2 Cinétique neutronique en code Monte-Carlo

- Théorie
- Validation
- Couplage avec la thermohydraulique

Propagation des incertitudes statistiques

- Propagation de l'incertitude sur la réactivité vers la puissance
- Propagation de l'incertitude sur la puissance vers la température

Application au RNR-He

- Présentation du RNR-He
- Modélisation en thermohydraulique
- Modélisation en neutronique
- Simulation de la remontée intempestive d'une barre de contrôle

Conclusion et perspectives

Généralités

Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Neutronique Thermohydraulique

Physique du couplage

Plan de l'exposé

Généralités

- Neutronique
- Thermohydraulique
- Physique du couplage
- 2 Cinétique neutronique en code Monte-Carlo
 - Théorie
 - Validation
 - Couplage avec la thermohydraulique
- Propagation des incertitudes statistiques
 - Propagation de l'incertitude sur la réactivité vers la puissance
 - Propagation de l'incertitude sur la puissance vers la température
- Application au RNR-He
 - Présentation du RNR-He
 - Modélisation en thermohydraulique
 - Modélisation en neutronique
 - Simulation de la remontée intempestive d'une barre de contrôle
- 5 Conclusion et perspectives

Neutronique Thermohydraulique Physique du couplage

Neutronique

- Description de l'interaction des neutrons avec les noyaux des atomes de la matière
- Diverses interactions (capture, fission, diffusion,...)
- Réaction en chaîne de fissions :

- Coefficient de multiplication neutronique **k** : nombre moyen de fissions engendrées par une seule fission, réactivité : $\rho = \frac{k-1}{k}$
- $\rho > 0$ (resp. $\rho < 0$) \Rightarrow système surcritique (resp. sous-critique)
- Flux $\phi(\vec{r}, E \vec{\Omega}, t)$: nombre de neutrons d'énergie *E* traversant une unité de surface par unité de temps selon la direction $\vec{\Omega}$

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques

Application au RNR-He

Neutronique Thermohydraulique Physique du couplage

Section efficace

- Probabilité d'interaction en fonction de l'énergie du neutron
- Présence de résonances liées aux niveaux énergétiques des noyaux
- Prise en compte de la densité de noyaux dans les sections efficaces macroscopiques Σ
- Taux de réaction volumiques : $\Sigma \phi$

section efficace microsopique de fission de l'uranium 235

Couplage neutronique - thermohydraulique. Application au RNR-He.

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conditision et nersenetives

Neutronique Thermohydraulique Physique du couplage

Section efficace

- Probabilité d'interaction en fonction de l'énergie du neutron
- Présence de résonances liées aux niveaux énergétiques des noyaux
- Prise en compte de la densité de noyaux dans les sections efficaces macroscopiques Σ
- Taux de réaction volumiques : Σφ

section efficace microsopique de fission de l'uranium 235

Bilan neutronique : équation du transport des neutrons

$$\frac{1}{v(E)} \frac{\partial \phi\left(\vec{r}, E, \vec{\Omega}, t\right)}{\partial t} + \left(\vec{\Omega} \cdot \vec{\nabla} + \Sigma_t\right) \phi\left(\vec{r}, E, \vec{\Omega}, t\right) = (\mathbb{S}\phi)\left(\vec{r}, E, \vec{\Omega}, t\right) + (\mathbb{C}^p \left[\beta_l\right] \mathbb{F}\phi)\left(\vec{r}, E, t\right) + \sum_l \lambda_l \mathbb{C}_l^d \left(E\right) c_l\left(\vec{r}, t\right) \frac{\partial c_l\left(\vec{r}, t\right)}{\partial t} + \lambda_l c_l\left(\vec{r}, t\right) = \beta_l\left(\vec{r}, t\right) (\mathbb{F}\phi)\left(\vec{r}, t\right)$$

Généralités

Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Neutronique Thermohydraulique

Physique du couplage

Cinétique point

$$\frac{dN}{dt} = \frac{\overline{\rho}(t) - \overline{\beta}(t)}{\overline{\Lambda}(t)} N(t) + \sum_{l} \lambda_{l} \overline{c}_{l}(t)$$
$$\frac{d\overline{c}_{l}}{dt} = -\lambda_{l} \overline{c}_{l}(t) + \frac{\overline{\beta}(t)}{\overline{\Lambda}(t)} N(t)$$

Généralités

Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Neutronique Thermohydraulique

Cinétique point

$$\frac{dN}{dt} = \frac{\overline{\rho}(t) - \overline{\beta}(t)}{\overline{\Lambda}(t)} N(t) + \sum_{l} \lambda_{l} \overline{c}_{l}(t)$$
$$\frac{d\overline{c}_{l}}{dt} = -\lambda_{l} \overline{c}_{l}(t) + \frac{\overline{\beta}(t)}{\overline{\Lambda}(t)} N(t)$$

Code de calculs

- Codes déterministes
 - discrétisation de l'équation de transport
 - théorie multigroupe (en énergie)
 - traitement des opérateurs selon les méthodes numériques classiques

- Codes Monte-Carlo

- résolution probabiliste de l'équation de transport
- traitement par générations de neutrons
- évaluation statistique de la réactivité et des taux de réaction

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He

Neutronique Thermohydraulique Physique du couplage

Thermohydraulique

Équations de conservation

- masse :

$$\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot \left(\rho \, \vec{u} \right) = 0$$

- quantité de mouvement :

$$\frac{\partial \left(\rho \ \vec{u}\right)}{\partial t} + \vec{\nabla} \cdot \left(\rho \ \vec{u} \otimes \vec{u}\right) = \rho \ \vec{F} - \vec{\nabla} \ \rho + \vec{\nabla} \cdot [\tau]$$

énergie :

$$\frac{\partial}{\partial t} \left(\rho \ c_{\rho} \ T \right) + \vec{\nabla} \cdot \left(\rho \ c_{\rho} \ T \ \vec{u} \right) = \vec{\nabla} \cdot \left(\lambda \ \vec{\nabla} \ T \right) + [\tau] : \vec{\nabla} \vec{u} + \mathbb{P}$$

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He

Neutronique Thermohydraulique Physique du couplage

Prise de moyenne

$$\langle X
angle^{arphi} = rac{1}{V_{arphi}} \int_{V_{arphi}} X dV \qquad \left\lceil f
ight
ceil_{arphi} = rac{\left\langle
ho_{arphi} f_{arphi}
ight
angle \, ext{(Favre)}$$

Équations de conservation en milieu poreux

- bilan quantité de mouvement :

$$\frac{\partial}{\partial t} \left(\langle \rho_t \rangle_t \left[\vec{u} \right]_t \right) + \vec{\nabla} \cdot \left(\langle \rho_t \rangle_t \left[\vec{u} \right]_t \otimes \left[\vec{u} \right]_t \right) = - \vec{\nabla} \langle \rho \rangle_t + \mu \vec{\nabla} \cdot \left(\vec{\nabla} \left[\vec{u} \right]_t \right) + \left(\vec{\nabla} \left[\vec{u} \right]_t \right)^t \right) + \langle \rho_t \rangle_t \left[\vec{F} \right]_t + \sum_{l=1}^3 \mathcal{Q}_{l,l}$$

- bilan d'énergie :

$$\frac{\partial}{\partial t} \left(\langle \rho_f \rangle_f \, c_{\rho_f} \, \langle T_f \rangle_f \right) + \vec{\nabla} \cdot \left(c_{\rho_f} \, \langle T_f \rangle_f \, \langle \rho_f \rangle_f \left[\vec{u} \right]_f \right) = \lambda_f \Delta \, \langle T_f \rangle_f + \frac{1}{V_f} \, \int_A \lambda_f \, \vec{\nabla} \, T_f \cdot \vec{n}_{fs} \, dA + \sum_{i=1}^3 E_{f,i} \, dA_f = \sum_{i=1}^3 E_{f,i} \, dA_f =$$

- bilan d'énergie dans le solide :

$$\rho_{s}c_{\rho_{s}}\frac{\partial\langle T_{s}\rangle_{s}}{\partial t} = \lambda_{s}\Delta\langle T_{s}\rangle_{s} + \langle \mathbb{P}_{s}\rangle_{s} + \frac{1}{V_{s}}\int_{A}\lambda_{s}\vec{\nabla}T_{s}.\vec{n}_{sf} dA$$

Neutronique Thermohydraulique Physique du couplage

Effets de température en neutronique

- Effet Doppler : modification des sections efficaces avec l'agitation thermique
- Effet de **dilatation** des matériaux : modification de la densité et donc des taux de réaction
- Effets de spectre

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Neutronique Thermohydraulique Physique du couplage

Effets de température en neutronique

- Effet **Doppler** : modification des sections efficaces avec l'agitation thermique
- Effet de dilatation des matériaux : modification de la densité et donc des taux de réaction
- Effets de spectre

Effet Doppler sur l'uranimu 238 résonance à 6,674 eV de la section efficace microscopique (n.?)

E (eV)

Puissance en thermohydraulique

- Les températures augmentent avec la puissance

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Neutronique Thermohydraulique Physique du couplage

Effets de température en neutronique

- Effet **Doppler** : modification des sections efficaces avec l'agitation thermique
- Effet de dilatation des matériaux : modification de la densité et donc des taux de réaction
- Effets de spectre

Puissance en thermohydraulique

Les températures augmentent avec la puissance

Transitoires où le couplage neutronique - thermohydraulique intervient

- Perte de débit du caloporteur
- Mouvement de barre de contrôle
- Ébullition du caloporteur

Objectifs de la thèse

- Mise en place d'une méthode de résolution de la cinétique neutronique avec un code Monte-Carlo
- Étude théorique des différents problèmes de propagation des erreurs statistiques introduites par ces codes
- Application à l'étude d'un transitoire sur un réacteur

Théorie Validation Couplage avec la thermohydraulique

Plan de l'exposé

- Neutronique
- Thermohydraulique
- Physique du couplage

2 Cinétique neutronique en code Monte-Carlo

- Théorie
- Validation
- Couplage avec la thermohydraulique
- Propagation des incertitudes statistiques
 - Propagation de l'incertitude sur la réactivité vers la puissance
 - Propagation de l'incertitude sur la puissance vers la température
- Application au RNR-He
 - Présentation du RNR-He
 - Modélisation en thermohydraulique
 - Modélisation en neutronique
 - Simulation de la remontée intempestive d'une barre de contrôle
- 5 Conclusion et perspectives

Théorie Validation Couplage avec la thermohydraulique

$$\phi\left(\vec{x},t\right) = N(t)\psi\left(\vec{x},t\right) \text{ avec } \vec{x} = \left(\vec{r},E,\vec{\Omega}\right)$$

N : amplitude du flux

 ψ : distribution du flux

Théorie Validation Couplage avec la thermohydraulique

Décomposition du flux

$$\phi\left(\vec{x},t\right) = N(t)\psi\left(\vec{x},t\right) \text{ avec } \vec{x} = \left(\vec{r},E,\vec{\Omega}\right)$$

N : amplitude du flux

 ψ : distribution du flux

Approximations

Terme
$$\frac{1}{v(E)} \frac{d\phi}{dt} \left(\vec{x}, t \right)$$
 négligeable si $\frac{\partial \psi}{\partial t} \ll \frac{1}{N} \frac{dN}{dt} \psi$ et $\frac{1}{N} \frac{dN}{dt} \ll \frac{\overline{\rho} - \overline{\beta}}{\overline{\Lambda}}$

Équations résolues après discrétisation en temps

$$\begin{pmatrix} \vec{\Omega} \cdot \vec{\nabla} + \Sigma_t \end{pmatrix} \phi \begin{pmatrix} \vec{x}, t_n \end{pmatrix} = (\mathbb{S} + \mathbb{C}^p [\beta_l] \mathbb{F}) \phi \begin{pmatrix} \vec{x}, t_n \end{pmatrix} + \left(\sum_l \lambda_l (\mathbb{C}^d_l c_l) \begin{pmatrix} \vec{r}, E, t_{n-1} \end{pmatrix} \right) \\ \frac{\partial c_l \begin{pmatrix} \vec{r}, t_n \end{pmatrix}}{\partial t} + \lambda_l c_l \begin{pmatrix} \vec{r}, t_n \end{pmatrix} = \beta_l \mathbb{F} \phi \begin{pmatrix} \vec{x}, t_n \end{pmatrix}$$

Théorie Validation Couplage avec la thermohydraulique

Benchmark numérique (K.S. Smith)

- Schéma simplifié d'un réacteur à eau sous pression
- Simulation d'un transitoire de mouvement de barres de contrôle
- Comparaison avec la solution d'un code déterministe

Generalites Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Théorie Validation Couplage avec la thermohydraulique

Théorie Validation Couplage avec la thermohydraulique

Couplage pratique : schéma semi-implicite

- Calcul de la cinétique neutronique sur un pas de temps n avec les résultats de thermohydraulique (températures, densités, ...) du pas de temps n 1
- Extraction de la puissance
- Calcul de l'évolution des températures sur le pas de temps *n* selon un maillage temporel plus fin

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Plan de l'exposé

- Neutronique
- Thermohydraulique
- Physique du couplage
- Cinétique neutronique en code Monte-Carlo
 - Théorie
 - Validation
 - Couplage avec la thermohydraulique
- Propagation des incertitudes statistiques
 - Propagation de l'incertitude sur la réactivité vers la puissance
 - Propagation de l'incertitude sur la puissance vers la température

Application au RNR-He

- Présentation du RNR-He
- Modélisation en thermohydraulique
- Modélisation en neutronique
- Simulation de la remontée intempestive d'une barre de contrôle
- 5 Conclusion et perspectives

Deux types de transmission

- Propagation de la réactivité vers la puissance (cinétique neutronique)
- Propagation de la puissance vers les températures (thermohydraulique)

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Mise en équation

- Modèle simple de cinétique ponctuelle avec contre-réaction thermique

$$\frac{dn}{dt} = \frac{\rho - \beta}{\ell} n + \lambda c \qquad \qquad \frac{dc}{dt} = -\lambda c + \frac{\beta}{\ell} n$$
$$\frac{dT}{dt} = -h \left(T - T_{ext} \right) + \sigma n \qquad \rho = -\alpha \left(T - T_{eq} \right)$$

- Introduction d'une erreur statistique sur la réactivité ρ
- Décomposition des variables, étude en régime permanent

$$\rho = \overline{\rho} + \delta \rho \qquad T = \overline{T} + \delta T$$

$$n = \overline{n} + \delta n$$
 $c = \overline{c} + \delta c$

- Discrétisation en temps de la perturbation sur la réactivité :

$$\delta\rho(t) = \sum_{i=0}^{+\infty} \delta\rho_{i\chi_{i}}(t) \text{ avec } \chi_{i}(t) = 1 \text{ si } t \in [t_{i}, t_{i+1}] \text{ (0 sinon)}$$
$$\forall i \in \mathbb{N}, \Delta t = t_{i+1} - t_{i} \text{ et var} (\delta\rho_{i}) = C^{te} = \text{var} (\rho) \propto \frac{1}{t_{cpu}\Delta t}$$

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Résultats

- Cas sans contre-réaction thermique ($\alpha = 0$)

$$\sigma_n \left(j \Delta t \right) \sim_{j \to +\infty} \sqrt{j} \, \overline{n} \left(\frac{\lambda \Delta t}{\beta} \right) \sigma_\rho \propto \sqrt{\frac{t}{t_{cpu}}}$$

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Evolution de la variance de n

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Evolution de la variance de n

⇒ Sans contre-réaction thermique, l'incertitude sur la puissance diverge

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Résultats

- Cas avec contre-réaction thermique ($\alpha > 0$)

$$\lim_{j \to +\infty} \sigma_n \left(j \Delta t \right) = S_0 = O_{\Delta t \to 0} \left(\frac{1}{\sqrt{t_{opu}}} \right)$$
$$\lim_{j \to +\infty} \sigma_n \left(j \Delta t \right) \sim_{\Delta t \to +\infty} S_\infty = \frac{h}{\sigma \alpha} \sigma_\rho \propto \frac{1}{\sqrt{t_{opu} \Delta t}}$$

Couplage neutronique - thermohydraulique. Application au RNR-He. 19 novembre 2009

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Evolution de l'erreur relative de n avec le pas de temps

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Evolution de l'erreur relative de n avec le pas de temps

⇒ La contre-réaction thermique stabilise l'erreur sur la puissance

Propagation de l'incertitude sur la puissance vers la température

- Étude théorique sur un milieu périodique à 2^ρ mailles de longueur Δx sur chaque direction
- Longueur L fixe sur chaque côté
- Équation de conduction discrétisée en temps selon un schéma Euler explicite et en espace selon un schéma centré à 3 points

$$\rho c_{\rho} \frac{dT}{dt} = \lambda \Delta T + \mathbb{P} \Rightarrow \rho c_{\rho} \frac{T_{n+1}^{i} - T_{n}^{i}}{\Delta t} = \lambda \frac{T_{n+1}^{i+1} - 2T_{n}^{i} + T_{n}^{i-1}}{\left(\Delta x\right)^{2}} + \mathbb{P}_{n}^{i}$$

- Solide de propriétés physiques λ, ρ, c_p
- Hypothèse : les variances de la puissance var (Pⁱ_n) sont les mêmes dans chaque maille et toutes ces variables aléatoires sont supposées indépendantes
- Calcul d'équivalents à $t = +\infty$ et pour $p \sim +\infty$

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Résultats			
Dimension	$\operatorname{var}\left(\mathbb{P} ight)$	$\lambda \rho c_{\rho} \operatorname{var}(T)$	
1D	$\propto \frac{1}{t_{cpu}\Delta t\Delta x}$	$\propto \frac{L}{t_{cpu}}$	
2D	$\propto \frac{1}{t_{cpu}\Delta t\left(\Delta x\right)^2}$	$\propto \frac{1}{t_{c\rho u}} \ln \left(\frac{L}{\Delta x} \right)$	
3D	$\propto \frac{1}{t_{cpu}\Delta t \left(\Delta x\right)^3}$	$\propto \frac{1}{t_{cpu}\Delta x}$	

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Evolution des variances avec Δx

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Propagation de l'incertitude sur la réactivité vers la puissance Propagation de l'incertitude sur la puissance vers la température

Evolution des variances avec Δx

 \Rightarrow Les incertitudes de la température divergent moins vite que celles de la puissance

Conclusion

- Méthode de calcul de la cinétique neutronique en code Monte-Carlo validée
- Couplage avec la thermohydraulique mis en place
- Phénomènes de propagation des erreurs statistiques caractérisés

 \Rightarrow Mise en application : étude d'un transitoire sur le réacteur à neutrons rapides refroidi à l'hélium

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Plan de l'exposé

- Neutronique
- Thermohydraulique
- Physique du couplage
- Cinétique neutronique en code Monte-Carlo
 - Théorie
 - Validation
 - Couplage avec la thermohydraulique
- Propagation des incertitudes statistiques
 - Propagation de l'incertitude sur la réactivité vers la puissance
 - Propagation de l'incertitude sur la puissance vers la température

Application au RNR-He

- Présentation du RNR-He
- Modélisation en thermohydraulique
- Modélisation en neutronique
- Simulation de la remontée intempestive d'une barre de contrôle

Conclusion et perspectives

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Caractéristiques du RNR-He

- Caloporteur **hélium** (quasi-transparent aux neutrons)
- Structures en carbure de silicium (propriétés thermiques et mécaniques attrayantes)
- Combustible (U,Pu)C (régénération de ²³⁹Pu)
- Spectre rapide
- Puissance : 2400 MW_{th}
- Concepts de cœur à plaques et à aiguilles

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Assemblages combustibles

Cœur étudié : assemblages à faisceaux de plaques combustibles

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Plan de chargement

- 387 assemblages fissiles
- 82 assemblages absorbants/inertes/réflecteurs
- Hauteur fissile : 1,55 m
- Réflecteur Zr₃Si₂ (60%) et He (40%)
- Absorbant B₄C (60%) et He (40%)

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remonitée intempestive d'une barre de contrôle

Modèles mis en place pour la thermohydraulique

- Objectif : connaître l'évolution des températures et des densités pour les fournir à la thermohydraulique (combustible, SiC et hélium)
- Problème : impossible de résoudre finement tous les éléments

 \Rightarrow Définition de 2 modèles :

- Un modèle à l'échelle des plaques combustibles
 - Données d'entrée : puissance dans le combustible, vitesse et température du caloporteur
 - Calcul de la température dans le combustible et le SiC et du flux thermique s'échappant des plaques
- Un modèle à l'échelle du cœur
 - Données d'entrée : flux thermique extrait des plaques combustibles
 - Calcul des caractéristiques de l'écoulement du caloporteur

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Modèle des plaques combustibles

- Homogénéisation de l'ensemble {pastille (U,Pu)C, matrice SiC, jeu He}
- Calcul de la conductivité thermique, de la masse volumique et de la capacité calorifique équivalentes

- Objectif : retrouver l'évolution des températures moyenne et maximale du combustible
- Validation par étude de la thermique 3D avec refroidissement par l'hélium
- Conditions de fonctionnement réacteur
- Comparaison des profils de température et des évolutions temporelles

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et nersenetives

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remonitée intempestive d'une barre de contrôle

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remonitée intempestive d'une barre de contrôle

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Étude monodimensionnelle

- Discrétisation 1D de la géométrie homogène
- Résolution des équations de conservation de l'énergie dans le matériau équivalent et le revêtement SiC
- Conservation du flux thermique aux interfaces

$$egin{cases} T_{eq} = a_{eq}z^4 + b_{eq}z^2 + c_{eq} \ T_{SiC} = a_{SiC}z^2 + b_{SiC}z + c_{SiC} \end{cases}$$

 (T_{He}) et coefficient d'échange à l'interface fluide solide extraits du calcul homogène 3D

Généralités Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He Conclusion et perspectives

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remonitée intempestive d'une barre de contrôle

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Modèle à l'échelle du cœur

- Objectif : déterminer la vitesse et la température du caloporteur dans les assemblages
- Résolution des équations de conservation en milieu poreux
- Hélium assimilé à un gaz parfait
- Prise en compte des jeux inter-assemblages
- Couplage avec le modèle des plaques dans le code Trio_U

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Conclusion sur les modèles de thermohydraulique

Calcul des grandeurs nécessaires pour la neutronique décomposé en 3 problèmes couplés

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Modèle neutronique d'homogénéisation des plaques combustibles

- Objectif : économiser du temps de calcul pour les calculs Monte-Carlo
- Définition d'un nouveau matériau en conservant la quantité totale de chaque noyau
- Validation par comparaison sur k_{eff} , $\frac{dk_{eff}}{dT_{fuel}}$ et le flux

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Modèle neutronique d'homogénéisation des plaques combustibles

- Objectif : économiser du temps de calcul pour les calculs Monte-Carlo
- Définition d'un nouveau matériau en conservant la quantité totale de chaque noyau
- Validation par comparaison sur k_{eff} , $\frac{dk_{eff}}{dT_{fuel}}$ et le flux

Résultats à 930 K

$$\begin{cases} k_{\text{hétérogène}} = 1,00198 \pm 22pcm \\ k_{\text{homogène}} = 1,00134 \pm 15pcm \end{cases}$$

$$\begin{cases} \left(\frac{dk_{eff}}{dT_{fuel}}\right)_{\text{hétérogène}} = -3, 13 \text{ pcm/K} \pm 0, 09 \text{ pcm/K} \\ \left(\frac{dk_{eff}}{dT_{fuel}}\right)_{\text{homogène}} = -3, 20 \text{ pcm/K} \pm 0, 06 \text{ pcm/K} \end{cases}$$

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remonitée intempestive d'une barre de contrôle

Résultats à 930 K

Comparaison des flux

Couplage neutronique - thermohydraulique. Application au RNR-He. 19 novembre 2009

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remonitée intempestive d'une barre de contrôle

Simulation sous Tripoli

Données du transitoire

- Remontée d'une barre de contrôle près du centre du cœur
- Vitesse de remontée : 3 cm.s⁻¹
- Efficacité de la barre : insertion de réactivité de l'ordre de $\beta \Rightarrow$ sans contre-réaction thermique, le réacteur peut devenir critique prompt
- Comportement attendu : augmentation de la puissance et des températures jusqu'à la stabilisation

Position initiale des barres de contrôle

- Barres d'arrêt complémentaire relevées
- Couronne de barres de contrôle internes à mi-hauteur
- Couronne de barres de contrôle externes à ~57% de la hauteur fissile

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Position initiale des barres de contrôle

Calcul

- Neutronique sur 68 processeurs maximum : incertitude de 10 pcm sur keff
- Thermohydraulique : ~200 000 mailles sur 36 processeurs (3 problèmes couplés)
- Pas de temps de 1 s (≠ sous pas de temps en thermohydraulique)
- ~12 h par pas de temps minimum

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Champs initiaux

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Champs initiaux

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Résultats

Couplage neutronique - thermohydraulique. Application au RNR-He. 19 novembre 2009

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Résultats

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Résultats

Couplage neutronique - thermohydraulique. Application au RNR-He.

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Résultats

Cinétique neutronique en code Monte-Carlo Propagation des incertitudes statistiques Application au RNR-He

Présentation du RNR-He Modélisation en thermohydraulique Modélisation en neutronique Simulation de la remontée intempestive d'une barre de contrôle

Résultats

Couplage neutronique - thermohydraulique. Application au RNR-He.

Plan de l'exposé

- Neutronique
- Thermohydraulique
- Physique du couplage
- 2 Cinétique neutronique en code Monte-Carlo
 - Théorie
 - Validation
 - Couplage avec la thermohydraulique
- Propagation des incertitudes statistiques
 - Propagation de l'incertitude sur la réactivité vers la puissance
 - Propagation de l'incertitude sur la puissance vers la température
- Application au RNR-He
 - Présentation du RNR-He
 - Modélisation en thermohydraulique
 - Modélisation en neutronique
 - Simulation de la remontée intempestive d'une barre de contrôle

Conclusion et perspectives

Bilan

- Démonstration de faisabilité de calculer la cinétique neutronique en code Monte-Carlo
- Mise en place d'un couplage externe entre un code Monte-Carlo et un code CFD
- Mise en évidence du rôle essentiel des contre-réactions thermiques pour la maîtrise des incertitudes
- Application à un réacteur de quatrième génération : définition de modèles pluri-disciplinaires validés
- Temps de calcul encore long devant les méthodes déterministes
- Vérification avec un calcul déterministe à réaliser

Perspectives

- Algorithme pouvant être utilisé pour le calcul de transitoires violents (REB)
- Possibilité d'implémentation dans les codes de calcul
- Atténuation de l'effet des incertitudes statistiques sur les résultats à étudier
- Étude sur les milieux poreux avec un fluide compressible à approfondir (termes de fermeture)
- Ouverture à la simulation de transitoires nécessitant une description fine des structures