

Développement d'un détecteur pour le contrôle des traitements de radiothérapie avec faisceaux de photons en ligne et en temps réel

<u>ra</u>nsparent <u>De</u>tector for <u>Ra</u>diotherapy

I. Fonteille – RJC Annecy 2010 – 15/12/10

Le LPSC et les applications médicales

- Membre de l'IN2P3 (physique nucléaire et physique des particules)
- Applications médicales : 2000-2010 : imagerie médicale
 Construction d'un prototype de tomographe à Xénon liquide

Photo et représentation 3D du prototype : 2 modules en vis-à-vis **Depuis 2009 : radiothérapie** Développement d'un détecteur pour le contrôle en ligne et en temps réel des traitements avec faisceau de photons (TraDeRa)

- Introduction à la radiothérapie avec faisceau de photons
- Modélisation simple d'un accélérateur médical pour simulations Geant4
- Etude et développement du détecteur TraDeRa
- Campagne de mesure réalisée sur un prototype

Description d'un accélérateur médical Les traitements modulés en intensité Les contrôles Les détecteurs amonts

Les traitements modulés en intensité

- But de la radiothérapie = délivrer une forte dose à la tumeur tout en minimisant la dose délivrée aux tissus sains environnants.
- Radiothérapie conformationnelle : chaque faisceau adapté à la « forme projetée » de la tumeur

Schéma principe utilisation MLC en RT conformationnelle Source : www.prostate-cancerradiotherapy.org.uk

Exemple d'un traitement RT conformationnelle à 4 faisceaux

Les traitements modulés en intensité

- But de la radiothérapie = délivrer une forte dose à la tumeur tout en minimisant la dose délivrée aux tissus sains environnants.
- Radiothérapie conformationnelle : chaque faisceau adapté à la forme projetée
- Radiothérapie avec Modulation d'Intensité (IMRT) : chaque faisceau est modulé en intensité de sorte que le dépôt de dose de l'ensemble des faisceaux soit adapté au volume de la tumeur

Scnema principe IIVIR I Source : www.prostate-cancerradiotherapy.org.uk

Dépôt de dose RT conformationnelle vs IMRT

Augmentation de la complexité et de la précision des traitements

Les traitements modulés en intensité

• Attention à la réponse biologique ...

Exemple d'une courbe dose effet.

La gravité des effets biologiques n'évolue pas linéairement avec la dose. Une erreur de ~5% de dose peut conduire à une différence d'effet de plus de 15%

→ Les traitements complexes entrainent une augmentation du risque de sur/sousirradiation au niveau des contours

Tradera Les contrôles

- Les contrôles de l'accélérateur
 - Le « Top ». Mesure quotidienne de la dose déposée en un point de référence dans les conditions de références
 - Contrôles qualité mensuel du mouvement du bras, du mouvement des mâchoires, de la table etc
 - Contrôle qualité mensuel du collimateur multi-lames
 - Mesure annuelle du dépôt de dose dans l'eau
 Mesure du rendement et des profils dans différentes conditions

Exemple de rendements(rdt) et de profils mesurés au CHU de Grenoble

Les contrôles

 Les contrôles du traitement. Pour RT conformationnelle contrôle pendant le traitement = la dosimétrie *In-Vivo* (obligatoire 2011)

Mesure de la dose au patient en quelques points, à la peau du patient ou dans une cavité naturelle.

- Utilisation diodes ou TLD
- Mesure seulement 1 ou 2 premières séances
- Ombre dans le dépôt de dose
- Dépendance de la réponse à l'angle du tir
- Interventions manuelles
- Pas adapté à l'IMRT

Tradera Les contrôles

 Les contrôles du traitement. Pour l'IMRT : en pratique clinique, contrôle avant le traitement.

Pour <u>chaque patient</u>, vérification sur fantôme de la concordance dose planifiée/dose délivrée.

Test de possibilité de réalisation du traitement par la machine

Fantôme simple

Films radiosensibles + chambre ionisation

Fantômes « intelligents »

Diodes intégrées ArcCheck, SunNuclear

TradeRa Les contrôles

 Les contrôles du traitement. Pour l'IMRT : apparition des contrôles pendant le traitement

La dosimétrie de transit

Détermination de la dose au patient à partir de le mesure de l'imageur portal, en aval du patient.

Les détecteurs amonts

Suivi en ligne et en temps réel de la fluence photons en sortie de l'accélérateur.

Tradera Les détecteurs amonts

• Apparition sur le marché de 2 solutions commerciales

Chambre David, PTW (2007)

Chambre à fil 1D, les fils étant à l'aplomb des lames.

- ⊗ Atténuation de ~ 6%
- ⊗ Pas de localisation de l'erreur

Compass, IBA (2008)

Matrice 40*40 chambres d'ionisations
(cavités d'air dans PMMA)
⊗ Atténuation non uniforme allant de ~2% à ~6%

→ 2 solutions améliorables

Mon travail : Etude par simulation Monte-Carlo d'un détecteur optimal

Tradera Cahier des charges

- Mesure 2D fluence photon
- Atténuation homogène et + faible possible
 - dose tumeur homogène réponse biologique aux rayonnements
 - création d'e- de contamination ↑ dose à la peau sans ↑ bénéfice thérap.
- Tenue au rayonnement
- Sur surface 20*20 cm²
- Résolution spatiale millimétrique
- Mesure en temps réel (~10 images par seconde)
- Fonctionnement à haut débit de charges
- Poids faible (rotation bras)
- Coût raisonnable

Modélisation sous Geant4 d'un accélérateur médical

Description d'un accélérateur Modélisation simple d'un acc. médical Validation

Description d'un accélérateur méd.

- Production d'un faisceau de photons par rayonnement de freinage d'un faisceau d'électrons.
- Mise en forme du faisceau clinique au niveau de la tête de l'accélérateur.

Source : Handbool of radiotherapy physics 2007

Les différents éléments de la tête en mode photon :

- La cible
- Le collimateur primaire
- Le cône égalisateur
- Les chambres d'ionisations moniteur
- Le miroir
- Les mâchoires ou collimateur secondaire (rectangulaire)
- Le MLC
- L'écran de sortie en Mylar

Modélisation simple d'un acc. méd.

- Geant4, c'est :
 - Bibliothèque c++ développée et maintenue par collaboration internationale
 - Modélisation transport particules & dépôt énergie associé
 - Domaine application : 250 (100) eV à 100 GeV
- Choix de la physique :
 - Geant4 standard plutôt que Geant4 LowEnergy.
- Choix d'une source de photons ponctuelle isotrope
 - Pas besoin de la même précision que les simulations calcul de dose dans le patient
 - Rapidité mise en œuvre +++
 - Pas de limitation statistique

Modélisation simple d'un acc. méd.

• Détermination du spectre en énergie de notre source ponctuelle

Qu'avons-nous ?

- Connaissance du rendement en profondeur mesuré (CHU Grenoble)
- Allure globale du spectre (rayonnement freinage filtré + littérature scientifique)

Stratégie :

- Modélisation du spectre par 1 ligne brisée de 3 segments.
- Recherche du spectre qui minimise (X²) erreur rdt simulé/ rdt mesuré

Validation sur chambre à fils

• 1^{ère} campagne de mesure au CHU de Grenoble

Mesure du courant moyen dans la chambre I, mesure = 13,0 +/- 0,1nA

Simulation Geant4 de la manip I, simu = 12,25 +/- 0,25nA

Tradera Visualisation du signal

• Visualisation du courant sur un oscillo via un ampli conv. courant/tension

Visualisation du signal

• Visualisation du courant sur un oscillo via un ampli conv. courant/tension

Retour sur fonctionnement accélérateur, Clinac 600

- Signal horloge = créneau de 5 us tt les 2,7 ms
- Onde accélératrice présente en synchronisme avec horloge
- Canon pulsé idem horloge mais pulses décalés ~20 us sauf 1/n pulse synchro avec horloge (n = 2 à 6)
 - → Faisceau présent 1/n pulse

Etude d'un détecteur optimal

Approche MicroMeGas Approche Chambre à anode pixélisée

Approche MicroMeGas

- Technologie envisagée = détecteur type Micromegas
 - principe = 1 zone dérive, 1 zone d'amplification
 - anode pixélisée pour lecture 2D position X,Y
 - fonctionnement haut débit de charge avec évacuation rapide des ions

Fig ures : Thèse de Maximilien Alexandre Chefdeville Development of Micromegas-like gaseous detectors using a pixelreadout chip as collecting anode

Approche MicroMeGas

- Intérêt pour notre application?
- Ce qu'on veut : la fluence photon. Un détecteur de trace permet :
 - De traiter les événements indépendamment
 - De remonter à la position du point d'interaction

De filtrer certains événements

Possibilité de filtrer les e- en provenance de la tête, de l'air ou du patient?

Approche MicroMeGas

- Facteur limitant dans notre cas = le flux de particule
- Estimation du flux d'e- dans un détecteur MicroMeGas type dans un environnement radiothérapie :

$$\Phi_{\rm charges} \sim 10^7 {\rm e}^-/({\rm sec} \times {\rm cm}^2)$$

MicroMeGas non optimale pour notre application

Approche chambre d'ionisation

• Chambre d'ionisation à anode pixélisée

Astuce pour optimisation transparence

Convertisseur = support circuit imprimé de l'anode pixélisée

ion

Situation du problème...

• Compromis entre 3 paramètres : atténuation, sensibilité et résolution spatiale

• Etude en 2 étapes : Etude de l'influence du convertisseur Etude du dépôt d'énergie dans le volume gazeux

Influence du convertisseur

- Simulation Geant4
- Source monodirectionnelle, spectre « médical 6 MV »
- Convertisseur.

Différents matériaux = époxy, verre, cuivre Epaisseur = 100 µm à 2 mm

- Questions :

Comment évolue le nombre de photons qui interagissent et qui sortent du convertisseur? Comment évolue la dispersion du point source?

Influence du convertisseur

Matériau = époxy verre cuivre

Pour les matériaux considérés, si on limite à atténuation ≤ ~1 % peu d'influence du matériau il faut epaisseur ≤ ~1mm.

convertisseur

P0

Influence du convertisseur TraDeRa

epoxy

Nb Electrons Sort

0

Pour les matériaux considérés, si on limite à atténuation $\leq \sim 1$ % peu d'influence du matériau Effet très limité (~100 µm max)

Dépôt d'énergie dans le gaz

- Simulation Geant4
- Source monodirectionnelle, spectre « médical 6 MV »
- Convertisseur constant = 400 µm de FR4
- Hauteur de dérive de 0,5 à 3 mm

Dépôt d'énergie dans le gaz

• Résultats :

On a bien augmentation linéaire de l'énergie déposée avec la hauteur de dérive Effet « bras de levier » important : pour 3 mm de dérive, ~50% énergie déposée à plis de 1 mm

TraDeRa Optimisation

- Introduction de parois entre les pixels?
 - Atténuation non homogène (solution concurrente)
- Dépôt de brevet en cours ...

Campagne de mesure sur un prototype

Description du prototype Visualisation compromis Comparaison simulation/mesure

Le prototype

Janvier 2010 : réception d'un prototype conçût et réalisé par la laboratoire

Caractéristiques :

- convertisseur = 400 µm de FR4
- hauteur de dérive modulable à partir de 0,5 mm
- pixel carré de 3*3 mm² avec un pas de 3,2 mm
- Électronique de lecture non intégrée

Présentation des 1eres mesures

TraDeRa Mesures de profils

• Mesure du courant en sortie d'un pixel avec un pico-amperemètre

Présentation des 1eres mesures

Comparaison simulation/mesure

- Observation de la transition
 - Exemple pour 2 mm de dérive :

Accord global correct

→ limite du model de source simple?

TraDeRa Conclusion

- Choix du type de détecteur
 - MicroMeGas non adapté
 - Chambre ionisation simple difficilement optimisable
 - Dépôt de brevet en cours
- Simulation
 - Model simple adapté au développement
 - Amélioration du model pour comparaison aux mesures
- Mesure
 - Electronique adaptée en développement