# A next-generation liquid-scintillator neutrino observatory

| John Beacom                                 | Leonid Bezrukov      | Johannes Blümer     |  |  |
|---------------------------------------------|----------------------|---------------------|--|--|
| Sandhya Choubey                             | Davide D'Angelo      | Grigorij Domogatsky |  |  |
| Steve Dye T                                 | Timo Enquist Fra     | nz von Feilitzsch   |  |  |
| Gianni Fiorentini                           | Marianne Göger-Neff  | Peter Grabmayr      |  |  |
| Caren Hagner l                              | Dominikus Hellgartne | r Josef Jochum      |  |  |
| Tobias Lachenmaie                           | er John G Learned    | d Timo Lewke        |  |  |
| Paolo Lombardi H                            | Bayarto Lubsandorzhi | ev Livia Ludhova    |  |  |
| Kai Loo Ju                                  | ıkka Maalampi 🛛 F    | abio Mantovani      |  |  |
| Michela Marafini Teresa Marrodan Undagoitia |                      |                     |  |  |
| Bill McDonough                              | Lino Miramonti       | Alessandro Mirizzi  |  |  |
| Quirin Meindl F                             | Randolph Möllenberg  | Rolf Nahnhauer      |  |  |
| Yuri Novikov                                | Lothar Oberauer      | Sandip Pakvasa      |  |  |
| Marco Pallavicini                           | Silvia Pascoli       | Thomas Patzak       |  |  |
| Juha Peltoniemi                             | Walter Potzel        | Georg Raffelt       |  |  |
| Martti Raidal                               | Gioacchino Ranucci   | Elisa Resconi       |  |  |
| Kari Rummukainen                            | Valerij Sinev        | Christian Spiering  |  |  |
| Achim Stahl                                 | Felicitas Thorne     | Marc Tippmann       |  |  |
| Alessandra Tonazzo                          | Wladyslaw Trzask     | a John Vergados     |  |  |
| Christopher Wiebus                          | ch Jürgen Winter     | Michael Wurm        |  |  |

September 7, 2010

#### Abstract

We propose a liquid-scintillator detector on the scale of 50 to 100 kiloton as a next-generation experiment for low energy neutrino physics, nucleon decay search, and long-baseline neutrino oscillations.

The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors (LSDs) as low-energy neutrino observatories. Low-energy threshold, good energy resolution and potent background discrimination are inherent to the liquid-scintillator technique. A 50-100 kton detector offers a substantial increase in detection sensitivity. This provides the opportunity to observe low-energy neutrinos from various astrophysical and terrestrial origins: High-statistics measurements of already established neutrino sources like a galactic Supernova (SN) explosion, the Sun or the Earth's interior will resolve energy spectra and the time development of the  $\nu$  signals in unprecedented detail. Reactor neutrino enable a high-precision measurement of solar mixing parameters. At the same time, the search for very rare events becomes possible, as the excellent background rejection allows to identify a handful of events out of several years of data taking. Thus, the faint flux of the Diffuse Supernova Neutrino Background (DSNB) is well within reach. Similarly, observation of rare annihilation neutrinos allows for indirect dark matter search.

Recent studies indicate that a large-volume LSD can resolve both momentum and energy of GeV particles on a level of a few percent. Moreover, Monte Carlo (MC) simulations studying the reconstruction capability of a LSD for the complex event topologies of charged-current neutrino interactions show promising results. These techniques offer the opportunity to complement the rich low-energy physics program of LENA by long-baseline neutrino oscillation experiments, either from atmospheric neutrinos or an accelerator-produced neutrino beam. Moreover, an increase in sensitivity for proton decay search is expected, the new lifetime limits for the  $K^+ \bar{\nu}$  decay channel surpassing current limits by more than an order of magnitude.

A next-generation LSD is expected to equal or to outperform a water-Čerenkov detector of several times its size in most respects, being at the same time largely complementary to the capabilities of a liquid-argon TPC. An LSD's low-energy neutrino program and its versatility are unrivaled. Due to the high level of expertise built up in several European and international research groups and dedicated R&D activities over the last years, the technique can be regarded as sufficiently mature to allow for a prompt start of the detector realization. A finalization of the construction within the next decade seems feasible, allowing for the first detection of low-energy neutrinos before the year 2020.

## Contents

| 1             | Intr | roduction                      | 4        |
|---------------|------|--------------------------------|----------|
| <b>2</b>      | Low  | v-energy physics               | <b>4</b> |
|               | 2.1  | Galactic Supernova neutrinos   | 4        |
|               | 2.2  | Diffuse Supernova neutrinos    | 4        |
|               | 2.3  | Solar neutrinos                | 4        |
|               | 2.4  | Geoneutrinos                   | 4        |
|               | 2.5  | Reactor neutrinos              | 4        |
|               | 2.6  | Indirect dark matter search    | 4        |
|               | 2.7  | Neutrino oscillometry          | 5        |
|               | 2.8  | Neutrinoless double-beta Decay | 5        |
| 3 GeV physics |      | V physics                      | <b>5</b> |
|               | 3.1  | Nucleon decay search           | 5        |
|               | 3.2  | Long-baseline neutrino beams   | 5        |
|               | 3.3  | Atmospheric neutrinos          | 5        |
| 4             | Tec  | hnical Aspects                 | <b>5</b> |
|               | 4.1  | Detector design                | 5        |
|               | 4.2  | Liquid scintillator            | 5        |
|               | 4.3  | Light detection                | 6        |
|               | 4.4  | Read-out electronics           | 6        |
|               |      |                                |          |

## 1 Introduction

Coordinator: Authors:

## 2 Low-energy physics

#### 2.1 Galactic Supernova neutrinos

Coordinator: A. Mirizzi

Authors: L. Bezrukov, J. Blümer, S. Choubey, G. Domogatsky, T. Enqvist, C. Hagner, M. Pallavicini, G. Ranucci, G. Raffelt, V. Sinev, C. Spiering, W. Traszka, J. Vergados, J. Winter

#### 2.2 Diffuse Supernova neutrinos

Coordinator: J. Beacom/G. Raffelt Authors: L. Bezrukov, J. Blümer, S. Choubey, G. Domogatsky, T. Enqvist, C. Hagner, A. Mirizzi, R. Möllenberg, M. Pallavicini, G. Ranucci, V. Sinev, W. Trzaska, M. Wurm

#### 2.3 Solar neutrinos

Coordinator: G. Ranucci

Authors: L. Bezrukov, J. Blümer, S. Choubey, G. Domogatsky, T. Enqvist, C. Hagner, L. Miramonti, A. Mirizzi, R. Möllenberg, M. Pallavicini, G. Raffelt, V. Sinev, W. Trzaska

#### 2.4 Geoneutrinos

Coordinator: L. Ludhova Authors: S. Dye, G. Fiorentini, J. Learned, K. Loo, F. Mantovani, B. Mc-Donough, L. Miramonti, R. Möllenberg, S. Pakvasa

#### 2.5 Reactor neutrinos

Coordinator: W. Trzaska Authors: S. Dye, T. Enqvist, T. Lachenmaier, L. Ludhova, K. Loo

#### 2.6 Indirect dark matter search

*Coordinator:* S. Pascoli *Authors:* 

## 2.7 Neutrino oscillometry

Coordinator: Y. Novikov Authors: T. Enqvist, F. Thorne, W. Trzaska, J. Vergados, M. Wurm

## 2.8 Neutrinoless double-beta Decay

*Coordinator:* M. Pallavicini *Authors:* J. Vergados

## 3 GeV physics

## 3.1 Nucleon decay search

*Coordinator:* T. Marrodan Undagoitia *Authors:* 

## 3.2 Long-baseline neutrino beams

Coordinator: A. Stahl Authors: J. Learned, M. Marafini, R. Nahnhauer, J. Peltoniemi, A. Tonazzo, C. Wiebusch

## 3.3 Atmospheric neutrinos

Coordinator: C. Wiebusch Authors: R. Nahnhauer, J. Peltoniemi, E. Resconi, C. Spiering

## 4 Technical Aspects

## 4.1 Detector design

Coordinator: R. Möllenberg Authors: C. Hagner, E. Resconi, C. Spiering, M. Wurm

## 4.2 Liquid scintillator

*Coordinator:* Q. Meindl/J. Winter *Authors:* J. Blümer, T. Enqvist, J. Jochum, T. Marrodan Undagoitia, M. Wurm

## 4.3 Light detection

Coordinator: M. Tippmann

Authors: T. Enqvist, P. Grabmayr, J. Jochum, P. Lombardi, B. Lubsandorzhiev, R. Nahnhauer, M. Pallavicini, T. Patzak, G. Ranucci, C. Spiering, A. Stahl

## 4.4 Read-out electronics

Coordinator: T. Patzak Authors: M. Pallavicini, A. Stahl, M. Tippmann

## 4.5 Event reconstruction/tracking

Coordinator: J. Learned Authors: D. Hellgartner, J. Peltioniemi, M. Wurm

## References

- [1] Kalliossuunnittelu Oy Rockplan LTD, www.rockplan.fi, 2008.
- [2] Pmm<sup>2</sup> webpage, pmm2.in2p3.fr (ANR-06-BLAN-0186-02).
- [3] A. de Bellefon *et al.*, (2006), hep-ex/0607026.
- [4] Memphys webpage, www.apc.univparis7.fr/apc\_cs/experiences/memphys.
- [5] OPERA, M. Guler et al., CERN-SPSC-2000-028.
- [6] BOREXINO, C. Arpesella *et al.*, Astropart. Phys. 18, 1 (2002), hepex/0109031.