

Neutrino 2010, Athens

Beta-Beams Status and Challenges

Elena Wildner, CERN

Outline

- Beta Beam Concepts
- A Beta Beam Scenario
- The challenges
- Other studies
- Conclusion

Beta-beams, recall 1

Aim:

Production of (anti-)neutrino beams from the beta decay of radio-active ions circulating in a storage ring with long straight sections.

 Similar the neutrino factory concept, but the parent particle is a beta-active isotope instead of a muon.

Beta-decay at rest

- v–spectrum well known from the electron spectrum
- Reaction energy Q typically of a few MeV

Beta-beams, recall 2

- Accelerate parent ion to relativistic γ_{max}
 - Boosted neutrino energy spectrum: $E_v \le 2\gamma Q$
 - Forward focusing of neutrinos: $\theta \le 1/\gamma$
- Pure electron (anti-)neutrino beam!
 - Depending on β^+ or β^- decay we get a neutrino or anti-neutrino
 - Two different parent ions for neutrino and anti-neutrino beams
- Physics applications of a beta-beam
 - Primarily neutrino oscillation physics and CP-violation (high energy)
 - Cross-sections of neutrino-nucleus interaction (low energy)

Choice of radioactive ion species

- Beta-active isotopes
 - Production rates
 - Life time
 - Dangerous rest products
 - Reactivity (Noble gases are good)
- Reasonable lifetime at rest
 - If too short: decay during acceleration
 - If too long: low neutrino production
 - Optimum life time given by acceleration scenario
 - In the order of a second
- Low Z preferred
 - Minimize ratio of accelerated mass/charges per neutrino produced
 - One ion produces one neutrino.
 - Reduce space charge problems

Neutrino energy: Q and γ

- Accelerators can accelerate ions up to Z/A × the proton energy. Parent ion acceleration
 Depends on the accelerated isotope
- $L \sim \langle E_v \rangle / \Delta m^2 \sim \gamma Q$, Flux $\sim L^{-2} =>$ Flux $\sim Q^{-2}$
- Cross section ~ $\langle E_{v} \rangle \langle \gamma Q \rangle$
- Merit factor (Flux * Cross-section) for an experiment at the atmospheric oscillation maximum: $M = \gamma/Q$
- Remember: ion lifetime ~ \u03c6, therefore we need longer straight sections in the decay ring to give the same flux for the same number of stored ions in the accelerator.
- Accelerator challenges: high γ and high intensities

Beta beam to different baselines

Pilar Coloma Optimization of the Two-Baseline B-Beam

The EURISOL scenario^(*) boundaries

- Based on CERN boundaries
- Ion choice: ⁶He and ¹⁸Ne
- Based on existing technology and machines
 - Ion production through ISOL technique
 - Bunching and first acceleration: ECR, linac
 - Rapid cycling synchrotron
 - Use of existing machines: PS and SPS
- Relativistic gamma=100 for both ions
 - SPS allows maximum of 150 (⁶He) or 250 (¹⁸Ne)
 - Gamma choice optimized for physics reach
- Opportunity to share a Mton Water Cherenkov detector with a CERN super-beam, proton decay studies and a neutrino observatory

Achieve an annual neutrino rate of 2.9*10¹⁸ anti-neutrinos from ⁶He 1.1 10¹⁸ neutrinos from ¹⁸Ne

- The EURISOL scenario will serve as reference for further studies and developments: Within Eurov we will study ⁸Li and ⁸B
- (*) FP6 "Research Infrastructure Action Structuring the European Research Area" EURISOL DS Project Contract no. 515768 RIDS

top-down approach

Low energy Beta Beams

Christina Volpe:

A proposal to establish a facility for the production of intense and pure low energy neutrino beams.

J Phys G 30 (2004) L1.

PHYSICS STUDIED WITHIN THE EURISOL D. EURISOL 009)

New approaches for ion production

"Beam cooling with ionisation losses" – C. Rubbia, A Ferrari, Y. Kadi and V. Vlachoudis in NIM A 568 (2006) 475–487

"Development of FFAG accelerators and their applications for intense secondary particle production", Y. Mori, NIM A562(2006)591

Studied within Eurov FP7 (*)

(*) FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

Gas Jet Targets and Cooling (GSI)

Cluster Beam Densities (Status)

	CELSIUS	E835 FERMILAB	Genova/GSI	ANKE and COSY-11	Münster
nozzle diameter	100 µm	37 µm	26 µm	11-16 μm	11-28 μm
gas temperature	20-35 K	20-32 K	28-35 K	22-35 K	20-35 K
gas pressure	1,4 bar	We need	10 ¹⁹ cm ⁻²	in our	>18 bar
distance from no zzl e	0,32 m	production ring Vacuum in beam pipe a			2,1 m <u>= PANDA</u> geometv!
target density	1,3x10 ¹⁴ cm ⁻²	problem	8x10 ¹⁴ cm ⁻²		

PANDA Cluster-Source Prototype

Alfons Khoukaz

Neutrino 2010 (Athens): Beta Beams, Elena Wildner

X-sections & angles, ⁸Li and ⁸B

Inverse kinematic reaction: ⁷Li + CD₂ target E=25 MeV

Status: Measurements performed for the production of ⁸Li

⁸B production experiments are being planned at INFN, Legnaro

We may need to investigate normal kinematics (liquid curtain targets)

Challenge: collection device

Status: The collection device is under test, results expected end summer 2010 for 8Li. Tests for 8B will follow.

ECR Source 60 GHz

Challenges:

Produce stripped ions (more difficult for high A ions) Adapted pulse length and beam emittance Optimize with further acceleration: Linac The source is developed for He, Ne, B and Li

Status:

Magnetic tests scheduled for mid 2010 60 GHz gyrotron for mid 2011

The SEISM Collaboration:

New ideas: ${}^{19}F(p, 2n) {}^{18}Ne$

The v_e beam needs production of 2.0 10¹³ ¹⁸Ne/s

Theoretically possible with 10 mA 70 MeV protons on NaF (¹⁹F(p, 2n)¹⁸Ne)

Summary of options for production

Courtesy T. Stora, P Valko

Туре	Accelerator	Beam	l _{beam} mA	E _{beam} MeV	P _{beam} kW	Target	Isotope	Flux s	Ok?
ISOL & n-converter	SPL	р	0.1	2 10 ³	200	W/BeO	6He	5 10 ¹³	
ISOL & n-converter	Saraf/GANIL	d	15	40	600	C/BeO	6He	5 10 ¹³	
ISOL	Linac 4	р	6	160	700	19F Molten NaF loop	18Ne	1 10 ¹³	>
ISOL	Cyclo/Linac	р	10	70	700	19F Molten NaF loop	18Ne	2 10 ¹³	
ISOL	LinacX1	зне	> 170	21	3600	MgO 80 cm disk	18Ne	2 10 ¹³	
P-Ring	LinacX2	7Li	0.160	25	4	d	8Li	?1 10 ¹⁴	
P-Ring	LinacX2	6L.i	0.160	25		3He	8B	?1 10 ¹⁴	
Poss Chall	sible	Needs optim	s som izatio	e n	R	& D !!!		Experime On paper, Not (entally OK may be OK DK yet

(ERN)

Radioprotection

Annual Effective Dose to the Reference Population (μ Sv)						
RCS	PS	SPS	DR			
0.67	0.64	-	5.6 (only decay losses)			

Stefania Trovati, Matteo Magistris, CERN

Yacin Kadi et al., CERN

Activation and coil damage in the PS

The coils could support 60 years operation with a EURISOL type beta-beam

Duty factor and RF Cavities

 10^{14} ions, 0.5% duty (supression) factor for background suppression for He/Ne Q - values and gamma = 100.

Particle deposition in Decay Ring

Cos₀ design open midplane magnet

J. Bruer, E. Todesco, E. Wildner, CERN

Momentum collimation (study ongoing): Very high challenge!

Momentum

8%

8%

collimated 6He

19%

Straight section

46%

collimation

Arc

Arc

Straight section

19%

Beam Stability (collective effects)

 $N_B^{th} = N_B^{org} / 427$

30

×10⁹

Instability dependencies of bunch intensities are being investigated for all machines

(ongoing for DR and SPS)

C. I

γ

The SPS RF programs are currently being developed in detail (A. Chancé, CEA) for the **Instability Studies**

Neutrino 2010, Athens, Beta Beams, Elena Wildner

Beta Beams in the world

 Work on a beta beam facility (CERN infastructre) and physics reach is going on within EUROnu

- Other laboratories (physics reach and facilities)
 - INO, India
 - Fermilab, USA
 - ✤ IPN, France
 - University of Valencia, Spain
 - ***** . . .

Summary, Beta-Beam status

- Production of isotopes
 - Production issues for ⁸Li and ⁸B studied in EUROnu
 - Sufficient yields of ⁶He obtained from experiments
 - Yields for ¹⁸Ne production: we wait for experimental verification
- CERN Complex beta beam baseline
 - Gamma = 100, ⁶He and ¹⁸Ne
 - Accelerator: RF and Collective Effects being studied
 - Costing
 - Advantage: existing infrastructure and technologies can be used
 - Comparison of performance with other neutrino facilities
- Synergy for physics reach: Beta Beams/Superbeams
- Higher gamma beta beams need CERN upgrades or other accelerators.

Design Study

Acknowledgements

FP6 "Research Infrastructure Action - Structuring the European Research Area" EURISOL DS Project Contract no. 515768 RIDS) and

FP7 "Design Studies" (Research Infrastructures) EUROnu (Grant agreement no.: 212372)

Particular thanks to

- M. Benedikt, (EURISOL study)
- M. Lindroos
- T. Stora

M. Mezetto

and all contributing institutes and collaborators

