Mesure de la section efficace de production des paires *tt* auprès de l'expérience ATLAS et recherche de signes d'une nouvelle physique

> Nancy Tannoury Directeur de thèse : Mossadek TALBY

Mesure de la section efficace tt

- Cadre théorique :
 - Le quark top dans le Modèle standard.
- Cadre expérimentale :
 - LHC et ATLAS.
- Outils :
 - Méthode pour mesurer l'efficacité de l'étiquetage des jets issus d'un quark b.
 - System8
 - Résultats et perspectives
 - Estimation du bruit de fond QCD multi-jets.
 - Méthode de la Matrice
 - Résultats et perspectives

Cadre Théorique

- ► Le plus grand couplage de Yukawa avec le boson de Higgs y_t ~1 et sa masse est proche de l'échelle électrofaible: $m_t \approx v/\sqrt{2}$
- Contrainte indirecte sur la masse du boson de Higgs
- Recherche de signes de nouvelle physique:
 - événements $tt \rightarrow$ bruit de fond important pour plusieurs canaux de recherche
 - quark top \rightarrow les nouvelles particules .

- Dernier quark découvert en 1995 au Tevatron
- $m_t = 171.3 \pm 1.2 \text{ GeV}$
- Durée de vie ~ 10^{-25} s et T_{QCD} ~ 10^{-23} s
- Charge= 2/3 e

▶
$$I(J^{P}) = 0(I/2 +)$$

- 3 canaux de désintégration des paires tt :
 - canal tout hadronique (~ 46 %)
 - canal di-leptonique (~10 %)
 - canal semi-leptonique (~44 %)
 - canal « electron+jets » :
 - 1 électron
 - 1 neutrino
 - > 2 jets issus de quarks b
 - > 2 jets issus de quarks légers

Nancy Tannoury

Cadre Expérimental

LHC : Large Hadron Collider

- collisionneur proton-proton
- ~27 km de circonférence
- 23 Novembre 2009 : 1^{ères} collisions à 900 GeV
- 30 Novembre 2009 : collisions à 2.36 TeV \rightarrow record mondial
- Depuis le 30 Mars 2010 : collisions à 7 TeV.

- ATLAS est un expérience généraliste qui a comme buts :
 - La recherche du boson de Higgs
 - La recherche des signes d'une nouvelle physique
 - Mesure des précisions du MS de la physique des particules
 - L'étude des propriétés du quark top

Nancy Tannoury

- ~ 3000 Km de câbles
- ~ 3000 physiciens
- ~ 137 universités et laboratoires

Détecteur ATLAS

Structure du détecteur ATLAS:

- Le détecteur interne de trace
 - Identification et reconstruction des trajectoires des particules chargées.
- La calorimétrie
 - Identification et mesure des énergies des particules.
- Le spectromètre à muon
 - Identification et mesure des impulsions des muons.

Nancy Tannoury

Détecteur pixel

Status du détecteur Pixel

- Le détecteur le plus proche du point d'interaction
- 80 millions de pixels répartis en des couches concentriques
- reconstruction des trajectoires des particules ainsi que des vertex → crucial pour le *b*-tagging
- La performance du *b-tagging* dépend en grande partie sur la performance du détecteur pixel

- Shift online dans la salle de
- # total de modules : 1744
- # de modules désactivés:~3.1%
- efficacité des hits : 0.98 %

- Shift online dans la salle de contrôle : surveillance des données et calibration du détecteur
- Shift offline : surveillance de la qualité des données et création du masque des pixels bruyants

Outils

Nancy Tannoury

14/06/2010

Etiquetage des jets issus d'un quark b

- L'étiquetage des jets issus d'un quark b est crucial pour :
 - la sélection d'un lot enrichi en événements tt
 - la mesure de la section efficace de production des paires bb
 - la recherche du boson de Higgs du MS de basse masse
 - la recherche de SUSY

Mesurer l'efficacité de l'étiquetage des jets issus d'un quark b est très important pour ces études : deux méthodes → <u>System8</u> et pTrel

Les algorithmes d'étiquetage des jets issus de quark *b* reposent sur :

- La présence d'un vertex secondaire
 - le quark b vol une certaine distance avant de se désintégrer
- Les propriétés du paramètre d'impact
 - la distance minimale entre une trace associée au jet et le vertex primaire
- La désintégration semi-leptonique des hadrons B
 - La présence d'un lepton mou dans le jet

System 8

Méthode pour mesurer l'efficacité de l'étiquetage des jets issus d'un quark b dans les données

System 8 : Equations

System 8 : Les équations

des jets dans chaque échantillon

des jets étiquetés avec le LT algorithme

des jets étiquetés avec le SM algorithme

des jets étiquetés avec les 2 algorithme

Estimés du MC

$$\alpha_{1} = \varepsilon_{b}^{LT,SM,n} / (\varepsilon_{b}^{LT,n} \varepsilon_{b}^{SM,n})$$

$$\alpha_{2} = \varepsilon_{cl}^{LT,SM,n} / (\varepsilon_{cl}^{LT,n} \varepsilon_{cl}^{SM,n})$$

$$\alpha_{3} = \varepsilon_{cl}^{SM,p} / \varepsilon_{cl}^{SM,n}$$

$$\alpha_{4} = \varepsilon_{cl}^{LT,p} / \varepsilon_{cl}^{LT,n}$$

$$\alpha_{5} = \varepsilon_{b}^{SM,p} / \varepsilon_{b}^{SM,n}$$

$$\alpha_{6} = \varepsilon_{b}^{LT,p} / \varepsilon_{b}^{LT,n}$$

$$\alpha_{7} = \varepsilon_{b}^{LT,SM,p} / (\varepsilon_{b}^{LT,p} \varepsilon_{b}^{SM,p})$$

$$\alpha_{8} = \varepsilon_{cl}^{LT,SM,p} / (\varepsilon_{cl}^{LT,p} \varepsilon_{cl}^{SM,p})$$

System 8 : Solution System 8 : Les équations Estimés du MC $\alpha_{1} = \varepsilon_{h}^{LT,SM,n} / (\varepsilon_{h}^{LT,n} \varepsilon_{h}^{SM,n})$ # des jets dans chaque échantillon n sample $\alpha_{2} = \varepsilon_{cl}^{LT,SM,n} / (\varepsilon_{cl}^{LT,n} \varepsilon_{cl}^{SM,n})$ p sample $n^{LT} = \varepsilon_b^{LT} n_b + \varepsilon_{cl}^{LT} n_{cl}$ $\alpha_{3} = \varepsilon_{cl}^{SM,p} / \varepsilon_{cl}^{SM,n}$ # des jets étiquetés $p^{LT} = \alpha_6 \varepsilon_b^{LT} p_b + \alpha_4 \varepsilon_{cl}^{LT} p_{cl}$ avec le LT algorithme $\alpha_{A} = \varepsilon_{cl}^{LT,p} / \varepsilon_{cl}^{LT,n}$ tag 1 $n^{SM} = \varepsilon_b^{SM} n_b + \varepsilon_{cl}^{SM}$ $\alpha_{5} = \varepsilon_{b}^{SM,p} / \varepsilon_{b}^{SM,n}$ # des jets étiquetés avec le SM $p^{SM} = \alpha_5 \varepsilon_b^{SM} p_b + \alpha_3 \varepsilon_{cl}^{SM} p_{cl}$ tag 2 $\alpha_{e} = \varepsilon_{h}^{LT,p} / \varepsilon_{h}^{LT,n}$ algorithme $\alpha_{7} = \varepsilon_{h}^{LT,SM,p} / (\varepsilon_{h}^{LT,p} \varepsilon_{h}^{SM,p})$ $\left[n^{LT,SM} = \alpha_1 \varepsilon_b^{LT} \varepsilon_b^{SM} n_b + \alpha_2 \varepsilon_{cl}^{LT} \varepsilon_{cl}^{SM} n_{cl}\right]$ # des jets étiquetés $p^{LT,SM} = \alpha_7 \alpha_5 \alpha_6 \varepsilon_b^{LT} \varepsilon_b^{SM} p_b + \alpha_8 \alpha_3 \alpha_4 \varepsilon_{cl}^{LT} \varepsilon_{cl}^{SM} p_{cl}$ avec les 2 $\alpha_{8} = \varepsilon_{cl}^{LT,SM,p} / (\varepsilon_{cl}^{LT,p} \varepsilon_{cl}^{SM,p})$ algorithme

Solution fit en utilisant une fonction de minimisation χ^2 en utilisant MINUIT 8 observables – 8 paramètres = 0 ddl \rightarrow System contraint

System 8 : Résultats

Jets avec $E < 80 \text{ GeV/c}^2$ (Avec SMT)

Jets avec $E > 80 \text{ GeV/c}^2$ (Avec DMT)

cut on IP3D

Analyse tt

Canal « électron + jets »

- Présélection:
 - ▶ Un électron (loose ou medium \rightarrow diapo prochain) :
 - ▶ p_T > 20 GeV
 - |η| < 2.5</p>
 - ▶ 1.37 < |η| < 1.52 exclue
 - Au moins 4 jets avec pt > 20 GeV
 - Dont au moins 3 avec pt > 40 GeV
- Bruits de fond:
 - Physique:
 - ∨ W→ev + jets additionnels : $σ ~ 13x | 0^3 pb$
 - Production du top individuel : $\sigma \sim 15 \text{ pb}$
 - Instrumental:
 - QCD multi-jets : $\sigma \sim 10^9 \text{ pb}$
 - Modélisation des événements est très incertaine
 - Problème de statistique (~ 3 500 000 evts générés \rightarrow L ~ 0.033 pb-1)

Identification des électrons

Electron = dépôt d'énergie dans le calorimètre EM + trace correspondante dans le détecteur interne.

- Coupures Loose : informations du calorimètre EM:
 - Exemple:
 - Largeur de la gerbe
 - Rapport entre la fuite d'énergie dans le calorimètre hadronique et l'énergie de l'amas.
 - L'énergie dans le deuxième compartiment du calorimètre EM
 - > Très bonne efficacité d'identification des électrons (~ 88 %) mais faible rejection du bruit de fond
- Coupures Medium : informations du calorimètre
 EM + informations du détecteur interne :
 - Exemple:
 - Nombre de coups dans le détecteur interne.
 - Forme de la gerbe dans le calorimètre EM.
 - Les énergies dans le calorimètre EM.
 - Réduction de l'efficacité d'identification (~77 %) mais amélioration de la rejection du bruit de fond

Estimation du bruit de fond QCD multi-jets Méthode de la Matrice : Estimation du bruit de fond QCD dans les données Deux échantillons différents de l'analyse *tt*: **N**_{loose} le # d'événements qui passe l'analyse tt en présélectionnant un électron loose, et N_{medium} en présélectionnant un électron medium $N_{loose} = N_{tt+W(\rightarrow ev)+sp} + N_{QCD}$ un jet production reconstruit d'un vrai comme un $N_{medium} = \varepsilon_{l \to m} \cdot N_{tt+W \to ev+st} + fr \cdot N_{QCD}$ électron électron $\mathcal{E}_{l \to m}$ est le taux $= \frac{N_{medium} - fr \cdot N_{loose}}{\varepsilon_{l \to m} - fr}$ de mauvaise $tt+W(\rightarrow ev)+st$ est l'efficacité identification de loose à medium loose à medium de l'électron $\mathcal{E}_{l \rightarrow m} \cdot N_{loose} - N_{medium}$ N_{QCD}

Développer deux méthodes qui peuvent être appliquées sur les données pour mesurer **l'efficacité loose à medium** de l'électron et **le taux de mauvaise identification**

16

Nancy Tannoury

Méthode Tag and probe

Mesure de l'efficacité loose -> medium avec la méthode tag and probe

- Tag and Probe appliquée sur les données se base sur le processus $Z \rightarrow ee$
 - Etiqueter un propre échantillon d'électrons en demandant un électron medium dans l'événement

Mesurer l'efficacité loose à medium en utilisant le second électron

Taux de mauvaise identification

Mesure du taux de la mauvaise identification de l'électron (fake rate) Le fake rate = le taux suivant lequel un jet hadronique est mal-identifié et reconstruit comme un électron loose, passe les coupures medium et sera identifié comme un électron medium.

Estimation du bruit de fond QCD multi-jets

Résultat

Résumé

Etude menant à la mesure de:

- Ia section efficace de production des paires tt dans ATLAS et recherche de signes d'une nouvelle physique
- Dans le cadre de cette analyse on travaille sur les outils suivantes:
 - Mesure de l'efficacité des jets issus d'un quark b
 - System 8 : méthode d'estimation des performances b-tagging à partir des données dans le lot muon+jets
 - L'estimation du bruit de fond QCD multi-jets
 - Méthode de la Matrice : Système d'équations linéaires ayant comme input l'efficacité et le taux de mauvaise identification, mesurés dans les données.

Merci pour votre attention

Nancy Tannoury

Back up

Nancy Tannoury

14/06/2010

System8 Solution(1) : Fixed α Fit

- 8 disjoint (independent) sets of events that are measured.
 - the error on the # of evts in each set i is $\sqrt{N_i}$
- 8 parameters :
 - 4 efficiencies : $\varepsilon_b^{LT}, \varepsilon_b^{SM}, \varepsilon_{cl}^{LT}, \varepsilon_{cl}^{SM}$
 - 4 sub-samples flavor composition :
- The α coefficients:
 - Estimated from Monte Carlo
- We bin by category and fit the population of each category to the 8 model parameters :
 - χ^2 fit using MINUIT :
 - 8 bins 8 parameters = 0 dof (completely constrained)
 - > χ^2 at minimum must be 0. We "solve" but also obtain statistical error using the fit method.

Nancy Tannoury

 $p_{h}, p_{cl}, n_{h}, n_{cl}$

System8 Solution(2) :Floating α Fit

$$\alpha_{1} = \varepsilon_{b}^{LT,SM,n} / (\varepsilon_{b}^{LT,n} \varepsilon_{b}^{SM,n})$$

$$\alpha_{2} = \varepsilon_{cl}^{LT,SM,n} / (\varepsilon_{cl}^{LT,n} \varepsilon_{cl}^{SM,n})$$

$$\alpha_{3} = \varepsilon_{cl}^{SM,p} / \varepsilon_{cl}^{SM,n}$$

$$\alpha_{4} = \varepsilon_{cl}^{LT,p} / \varepsilon_{cl}^{LT,n}$$

$$\alpha_{5} = \varepsilon_{b}^{SM,p} / \varepsilon_{b}^{SM,n}$$

$$\alpha_{6} = \varepsilon_{b}^{LT,p} / \varepsilon_{b}^{LT,n}$$

$$\alpha_{7} = \varepsilon_{b}^{LT,SM,p} / (\varepsilon_{b}^{LT,p} \varepsilon_{b}^{SM,p})$$

$$\alpha_{8} = \varepsilon_{cl}^{LT,SM,p} / (\varepsilon_{cl}^{LT,p} \varepsilon_{cl}^{SM,p})$$

The α coefficients:

- Estimated from Monte Carlo
- Their statistical errors from Monte Carlo enter in the fit \rightarrow Full Covariance between all the 8 α coefficients

- Extend the fit by floating the α coefficients
- Add a term $(\alpha \alpha_0)^T \mathbf{C}^{-1} (\alpha \alpha_0)$ to the χ^2 to constrain them.
 - \rightarrow Fit has 16 inputs + 16 parameters

 \rightarrow still 0 dof

In this study we estimate the alphas from the same sample we use for calibration. → perfect correction

Note:

Calibration Using Soft Muon Tagger

- SoftMuon tagger:
 - Likelihood ratio of the p_T^{rel}
 - good purity + low correlation
 with the lifetime taggers
 - used to calibrate the b-tagging efficiency for jets with E < 80 GeV</p>
- Pre-selection:
 - > jets:
 - ▶ _{PT} > 15 GeV
 - |η| < 2.5</p>
- <u>n-sample:</u>
 - Only jets with a muon
 - SMT > 0 (one muon found by the SoftMuon tagger)
 - b-fraction = 55.5 %
- <u>p-sample:</u>
 - opposite side b-tagged jet :
 - tagged with the tagger to calibrate
 - _____ L___ cut on the weight chosen _to_give a good difference in the f_b _between the two samples _ _
 - Nancy Tannoury

Calibration Using The Double Muon Tagger

- DoubleMuon tagger:
 - 2 µs with opposite charge
 - \blacktriangleright weight is the invariante mass of the 2 μ
 - used to calibrate the b-tagging efficiency for jets with E > 80 GeV

jet axis

- ▶ -2 GeV/c² → don't have two μ
- -1 GeV/c² \rightarrow 2 μ with same charge
- <u>n-sample:</u>
 - > Jets with a muon

• <u>p-sample:</u>

- opposite side b-tagged jet :
 - tagged with (IP3D+SVI) > 2

Nancy Tannoury

26 14/06/2010

> isEM is a flag option that can be set, checking every electron past a selection criteria and then for each return either a bool 0 or 1, for pass or rejected respectively.

> isEM can be set to various states, with each different state including or excluding certain criteria, (ex: isEM = Loose, isEM = Medium, isEM = Tight).

isEM = Loose checks for the criteria:

- Cluster Eta Range
- Cluster Hadronic Leakage
- Cluster Middle Energy
- Cluster Middle Energy Ratio 37
- Cluster Middle Energy Ratio 33
- Cluster Middle Width

Each of these criteria has its own definition in terms of variables extractable from

the ElectronContainer and EMshower Information.

Electron Identification

• Cluster Eta Range The Eta for each Electron determines the level of the cut for the subsequent criteria.

• Cluster Hadronic Leakage The amount of leakage into the hadronic calorimeter calculated as the amount of energy in the HCAL (ethad1), divided by transverse cluster energy (pt).

• Cluster Middle Energy Checks the variable (e277) which is the uncalibrated energy (sum of cells) of the middle sampling in a rectangle of size 7x7 (in cell units eta x phi).

• Cluster Middle Energy Ratio 37 This is the ratio of (e237) divided by (e277), where e237 is the same as e277 but for a rectangle size of 3x7.

• Cluster Middle Energy Ratio 33 This is the ratio of (e233) divided by (e237), where e233 is again the same as e277 but for a rectangle this time of size 3x3.

• Cluster Middle Width The variable (Weta2) is a measure of the shower width in the ECAL.

Electron Identification

isEM = Medium includes the Loose criterias + new criterias :

29

Electron Identification

CaloStrips

Cluster Strips E ratio

Fraction of energy found in the first sampling.

• Cluster Strips Delta Emax2

Energy of the second maximum in the first sampling

Cluster Strips Delta E

Difference between second maximum and first minimum in strips

Cluster Strips W tot

Shower width in the first sampling

Cluster Strips Fracm

Shower shape in shower core 1st sampling

Cluster Strips W eta1c

Shower width weighted by distance from the 1st maximum

Tracking

TrackPixel

Number of hits in the pixel detector (At least one hit)

TrackSi

Number of hits in the pixel detector + SCT (at least nine hits)

• TrackA0

Distance of closest approach

Track Match Eta

Eta difference between cluster and extrapolated track in the 2^{nd} sampling

Matrix Method

Error calculation

$$\begin{split} N_{tt+Wev+st} &= \frac{N_{medium} - fr.N_{loose}}{\varepsilon - fr} \\ N_{QCD} &= \frac{\varepsilon N_{loose} - N_{medium}}{\varepsilon - fr} \end{split} \implies \begin{bmatrix} N_1 = N_{loose} - N_{medium} \\ N_2 = N_{medium} \end{bmatrix} \end{split}$$

$$\Delta N_{tt+Wev+st} = \sqrt{\left(\frac{dN_{tt+Wev+st}}{d\varepsilon_{l->m}}\right)^2} \Delta \varepsilon^2_{l->m} + \left(\frac{dN_{tt+Wev+st}}{dfr}\right)^2 \Delta fr^2 + \left(\frac{dN_{tt+Wev+st}}{dN_1}\right)^2 \Delta N_1^2 + \left(\frac{dN_{tt+Wev+st}}{dN_2}\right)^2 \Delta N_2^2$$

$$\Delta N_{QCD} = \sqrt{\left(\frac{dN_{QCD}}{d\varepsilon_{l->m}}\right)^2} \Delta \varepsilon^2_{l->m} + \left(\frac{dN_{QCD}}{dfr}\right)^2 \Delta fr^2 + \left(\frac{dN_{QCD}}{dN_1}\right)^2 \Delta N_1^2 + \left(\frac{dN_{QCD}}{dN_2}\right)^2 \Delta N_2^2$$