

Recherche de la Nouvelle Physique dans les désintégrations $B_s \rightarrow J/\psi \phi$ auprès du détecteur LHCb

- \blacktriangleright Mesure de Φ_s
- Le détecteur LHCb
- Acceptances angulaires
- Premières données
- Conclusion et perspectives

Emilie Maurice Directeurs de thèse: Olivier Leroy & Renaud Le Gac

> CPPM, Aix-Marseille Université, Séminaire des doctorants de 1ère année, 14/06/2010

La mesure de Φ_s

Définition de Φ_s

Le Modèle Standard rend compte de la violation CP via la matrice CKM:

Matrice 3x3, unitaire,
3 paramètres réels, 1 phase complexe,
Représente la probabilité qu'un quark q se transforme en quark q'

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

$$\boldsymbol{\beta}_{s} = \arg\left(\frac{-V_{ts}V_{tb}^{*}}{V_{cs}V_{cb}^{*}}\right)$$

> Modèle Standard: $-2\beta_s = -0.0360 \pm 0.0018$ rad

Dans LHCb, on mesure la phase $\Phi_s = -2\beta_s + \Phi_{NP}$

14/06/2010

Pourquoi mesurer Φ_s dans les désintégrations $B_s \rightarrow J/\psi \phi$?

 $\Phi_{\rm s}$ est créée par les interférences entre:

 $Φ_s$ apparaît dans les taux de désintégrations de $B_s \rightarrow J/ψ φ$. 14/06/2010 E. Maurice

Pourquoi mesurer Φ_s dans les désintégrations $B_s \rightarrow J/\psi \phi$

Avantages de $B_s \rightarrow J/\psi \phi$:

✓ Rapport de branchement visible important 27×10^{-6} , soit 30k pour 1fb⁻¹ à 7 TeV ($\sigma(\Phi_s) = 0.06$)

- ✓ Désintégration du J/ ψ →µµ.
- ► Inconvénients de $B_s \rightarrow J/\psi \phi$:
 - Désintégration d'un pseudo-scalaire en 2 vecteurs,
 - Mélange d'états finals CP pairs et impairs.

Etude angulaire pour séparer statistiquement les états CP pairs/impairs.

Mesure de $\Phi_{\rm s}$

Comment mesurer Φ_s dans LHCb ?

- 1. Détecter et déclencher,
- 2. Sélectionner les désintégrations $B_s \rightarrow J/\psi \phi$ et ses canaux de contrôle $(B^+ \rightarrow J/\psi K^+, B_d \rightarrow J/\psi K^*)$ de manière similaire, en minimisant les distorsions des acceptances temporelle et angulaires,
- 3. Mesurer le temps propre (résolution, acceptance),
- 4. Mesurer les angles (résolution, acceptance),
- 5. Etiqueter la saveur initiale des mésons B_s
- 6. Ajuster la fonction de vraisemblance des taux de désintégration:

$$\mathcal{L}(t, q, \theta, \phi, \psi, m; \Phi_{s}, \Gamma_{s}, \Delta\Gamma_{s}, \Delta m_{s}, A_{\perp}, A_{\parallel}, \delta_{\perp}, \delta_{\parallel}, \omega, \sigma(t) \dots)$$
Variables Paramètres physiques Paramètres détecteur

7. Etude des erreurs systématiques.

14/06/2010

Mesure de Φ_s

Mes contributions

Comment mesurer phis dans LHCb ?

- 1. Détecter et déclencher,
- 2. Sélectionner les désintégrations $B_s \rightarrow J/\psi \phi$ et ses canaux de contrôle (B⁺ $\rightarrow J/\psi K^+$, $B_d \rightarrow J/\psi K^*$) de manière similaire, en minimisant les distorsions des acceptances temporelle et angulaires,
- 3. Mesurer le temps propre (résolution acceptance),
- 4. Mesurer les angles (résolution acceptances),
- 5. Etiqueter la saveur initiale des mésons B_s
- 6. Ajuster la fonction de vraisemblance des taux de désintégration:

7. Etude des erreurs systématiques.

14/06/2010

Mesure de Φ_s : prédiction

Depuis le 30 mars 2010: collision protons-protons d'énergie au centre de masse 7TeV. Spectromètre orienté vers l'avant depuis le point de collision

Etude des acceptances angulaires

Etude des acceptances angulaires

Définition des angles en bases de transversité de $B_s \rightarrow J/\psi \phi$

Distributions caractéristiques pour chaque angle:

Etude des acceptances angulaires

> Différence entre distributions angulaires expérimentales et théoriques

 \rightarrow source de systématiques.

Acceptance = <u>Distribution expérimentale</u> <u>Distribution théorique</u>

Ex: si 5% d'erreur sur les acceptances angulaires,

- $\circ~$ Pour $\Phi_{\rm s}~$ MS: incertitude maximale sur $\Phi_{\rm s}$: 7 ± 4 %
- Pour Φ_{s} NP: incertitude maximale sur Φ_{s} : 2.9 ± 0.3 %

> Définition de la distorsion pour quantifier ces acceptances:

 $Distorsion = \frac{Maximum - Minimum}{Maximum}$

Après simulation complète, trigger et sélection, les acceptances angulaires sont:

Etude des acceptances angulaires

- Quelles sont les origines de ces distorsions angulaires ?
 - Series of the series of the series of the series $B_s \rightarrow J/\psi \phi$ sans aucune coupure,
 - > Appliquer indépendamment chaque coupure:
 - > Forme du détecteur,
 - > Coupures cinématiques de la sélection offline,
 - > Reproduire les efficacités de reconstruction.
 - Calculer les distorsions

(%	Coupures	Cos θ	φ	Cos y
) su	Détecteur	7.4 ± 1.1	13.5 ± 1.1	3.8 ± 1.2
sio	Cinématiques	3.2 ± 1.2	3.8 ± 1.2	4.5 ± 1.2
stor	Efficacité de reconstruction	4.1 ± 0.6	4.0 ± 1.0	2.7 ± 0.9
Di	Toutes	8.2 ± 3.1	14.7 ± 3.1	7.9 ± 3.5

Formes et ordres de grandeur des acceptances angulaires retrouvées.

Principale source de distorsions: la forme du détecteur.

E. Maurice and al. "Study of angular acceptance in $B_s \rightarrow J/\psi \phi$ " LHCb-INT-2009-031.

► Correction des distorsions: avec MC ($B_d \rightarrow J/\psi$ K*, cf LHCb-ROADMAP3-001)

Premières données et canaux de contrôle

Premières données et canaux de contrôle

Etude de 2 canaux de contrôle: $B^+ \rightarrow J/\psi K^+$, $B_d \rightarrow J/\psi K^*$

- ▷ Extraction résolutions temporelle, angulaires (pour $B_d \rightarrow J/\psi K^*$),
- Extraction des paramètres d'étiquetage.

Analyse des vraies données:

- 1. Mesure des masses des particules connues et comparaison données/simulation,
- 2. Mesure de paramètres connus (temps de vie du B⁺, …),
- Mesure des performances d'étiquetage de B⁺→ J/ψ K⁺, B_d→ J/ψ K^{*},

Premières données et canaux de contrôle

Etude de 2 canaux de contrôle: $B^+ \rightarrow J/\psi K^+$, $B_d \rightarrow J/\psi K^*$

- > Extraction résolutions temporelle, angulaires (pour $B_d \rightarrow J/\psi K^*$),
- > Extraction des paramètres d'étiquetage.

Premières données

14/06/2010

Premières données

 \succ Le premier candidat B⁺→ J/ψ K⁺

14/06/2010

Conclusion et perspectives

- La mesure de Φ_s est complexe puisqu'elle nécessite une compréhension complète :
 - des paramètres du détecteur (fraction de mauvais étiquetage, résolutions, ...),
 - des paramètres physiques,
 - des variables: temps, angles, étiquetage, masse.
- Mes travaux durant cette première année:
 - \triangleright étude les sources de distorsions des acceptances angulaires de B_s→ J/ψ ϕ ,
 - étude des premières données (sélection).
- > Perspectives:
 - Mesurer le temps propres des B⁺ dans les premières données,
 - > Mesurer les paramètres d'étiquetage.

> Théorie

> LHCb

> Analyse

> Théorie

Théorie: Système de mésons

Les mésons B_q correspondent à une superposition d'états quantiques: $|B_L\rangle = p |B_q\rangle + q |\overline{B_q}\rangle$ et $|B_H\rangle = p |B_q\rangle - q |\overline{B_q}\rangle$ avec p et q des coefficients complexes tels que $|p|^2 + |q|^2 = 1$

Evolution temporelle décrite par l'hamiltonien $\mathcal{H} = M - \frac{i}{2}\Gamma$

avec M et Γ les matrices de masses et de largeurs de désintégration

Définitions des différences de:

Masses:
$$\Delta m_q = M_H - M_L$$

- Largeur de désintégration: $\Delta \Gamma_q = \Gamma_H \Gamma_L$
- Définitions des amplitudes de désintégration pour un état final *f*:

$$A_f = \langle f | \mathcal{H} | \mathcal{B}_q \rangle \qquad \qquad \bar{A}_f = \langle f | \mathcal{H} | \overline{\mathcal{B}}_q \rangle$$

Théorie: Violation CP

Opérateurs:

- Conjugaison de charge C: oppose les nombres quantiques additifs d'une particule
- Parité P: renverse la direction d'une particule.
- Symétrie CP: change une particule en son anti-particule

Violation CP:

- Observée dans les désintégrations faibles
- 3 types de violation CP dus aux:
 - Désintégrations $\rightarrow |A_f| \neq |\bar{A}_f|$
 - Oscillations $\rightarrow |p| \neq |q|$
 - Interférences entre les oscillations et désintégrations
- ➢ Pour un même état final: B_s→f et B_s→f, la violation CP est due aux interférences donc: $|A_f| = |\bar{A}_f|$ et |p| = |q|

Interprétation de Φ_s

> Oscillations:

- > Amplitudes proportionnelles à $sin(\Phi_s)$
- > Fréquence $\sim \Delta m_s$

Taux de désintégration du canal $B_s \rightarrow J/\psi \phi$

$$\frac{d^4\Gamma(\mathbf{B}^0_{\mathrm{s}}\to f)}{dt\ d\Omega}\propto \sum_{k=1}^6 h_k(t)g_k(\Omega)$$

$$\frac{d^4\Gamma(\overline{\mathbf{B}}^0_{\mathrm{s}} \to f)}{dt \ d\Omega} \propto \sum_{k=1}^6 \bar{h}_k(t) g_k(\Omega)$$

2 fonctions distinctes dépendantes respectivement du temps et des angles:

k	$h_{k(t)}$	$g_{k(\Omega)}$	k	$h_{k(t)}$	$g_{k(\Omega)}$
1	$ A_0(t) ^2$	$2\cos^2\psi (1-\sin^2\theta\cos^2\varphi)$	4	$\Re e\{A_0^*(t)A_{\parallel}(t)\}$	$\frac{1}{\sqrt{2}} \sin 2\psi \sin^2\theta \sin 2\varphi$
2	$\left A_{\parallel}(t)\right ^{2}$	$\sin^2\psi \left(1-\sin^2 heta\sin^2arphi ight)$	5	$\Im m \{ A^*_{\parallel}(t) A_{\perp}(t) \}$	$-\sin^2\psi\sin2 heta\sinarphi$
3	$ A_{\perp}(t) ^2$	$sin^2 \psi sin^2 heta$	6	$\Im m\{A_0^*(t)A_{\perp}(t)\}$	$\frac{1}{\sqrt{2}} \sin 2\psi \sin 2\theta \cos \varphi$

$$\begin{aligned} |A_{0}(t)|^{2} &= |A_{0}(0)|^{2} e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \cos\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\Phi \sin(\Delta m_{s}t) \right] \\ |A_{0}(t)|^{2} &= |A_{\parallel}(0)|^{2} e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \cos\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\Phi \sin(\Delta m_{s}t) \right] \\ |A_{0}(t)|^{2} &= |A_{\perp}(0)|^{2} e^{-\Gamma_{s}t} \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \cos\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \sin\Phi \sin(\Delta m_{s}t) \right] \\ \Re\{A_{0}^{*}(t)A_{\parallel}(t)\} &= |A_{0}(0)||A_{\parallel}(0)|e^{-\Gamma_{s}t} \cos(\delta_{2} - \delta_{1}) \left[\cosh\left(\frac{\Delta\Gamma_{s}t}{2}\right) - \cos\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\Phi \sin(\Delta m_{s}t) \right] \\ \Im\{A_{\parallel}^{*}(t)A_{\perp}(t)\} &= |A_{\parallel}^{*}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} \left[-\cos\delta_{1} \sin\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\delta_{1} \cos(\Delta m_{s}t) - \cos\delta_{1} \cos\Phi \sin\left(\Delta m_{s}t\right) \right] \\ \Im\{A_{0}^{*}(t)A_{\perp}(t)\} &= |A_{0}^{*}(0)||A_{\perp}(0)|e^{-\Gamma_{s}t} \left[-\cos\delta_{2} \sin\Phi \sinh\left(\frac{\Delta\Gamma_{s}t}{2}\right) + \sin\delta_{2} \cos(\Delta m_{s}t) - \cos\delta_{2} \cos\Phi \sin\left(\Delta m_{s}t\right) \right] \end{aligned}$$

Acceptances angulaires

> Distributions théoriques de θ , ϕ et ψ , pour les mésons Bs et Bs:

$$g(\cos\theta) = \iiint \left(\frac{d^4 \Gamma(\mathsf{B}^0_{\mathrm{s}} \to f)}{dt \, d\Omega} + \frac{d^4 \Gamma(\overline{\mathsf{B}^0_{\mathrm{s}}} \to f)}{dt \, d\Omega} \right) dt \, d\varphi \, d\psi = \frac{3}{8} (N_0 + N_{\parallel})(1 + \cos^2\theta) + \frac{3}{4} N_{\perp}(1 - \cos^2\theta),$$

$$g(\varphi) = \iiint \left(\frac{d^4 \Gamma(\mathsf{B}^0_{\mathrm{s}} \to f)}{dt \, d\Omega} + \frac{d^4 \Gamma(\overline{\mathsf{B}^0_{\mathrm{s}}} \to f)}{dt \, d\Omega} \right) dt \, d\theta \, d\psi = \frac{3}{4\pi} \left(1 - \frac{2}{3} \cos^2\theta \right) N_0 + \frac{3}{4\pi} \left(1 - \frac{2}{3} \sin^2\theta \right) N_{\parallel} + \frac{1}{2\pi} N_{\perp},$$

$$f(f_{\mathrm{s}}(d^4 \Gamma(\mathsf{B}^0 \to f) - d^4 \Gamma(\overline{\mathsf{B}^0_{\mathrm{s}}} \to f)) = 3 - 3$$

$$g(\cos\psi) = \iiint \left(\frac{d^4\Gamma(B^0_s \to f)}{dt \, d\Omega} + \frac{d^4\Gamma(B^0_s \to f)}{dt \, d\Omega}\right) dt \, d\theta \, d\varphi = \frac{3}{2}N_0\cos^2\psi + \frac{3}{4}\sin^2\psi(N_{\parallel} + N_{\perp}).$$

avec
$$N_0 = \int \frac{1}{2} (|A_0(t)|^2 + |\overline{A_0}(t)|^2) dt$$
 $N_{\parallel} = \int \frac{1}{2} (|A_{\parallel}(t)|^2 + |\overline{A_{\parallel}}(t)|) dt$ $N_{\perp} = \int \frac{1}{2} (|A_{\perp}(t)|^2 + |\overline{A_{\perp}}(t)|^2) dt$

Acceptances angulaires

Mesure de A_{sl}

 $\Phi_{\rm NP}$ apparaît dans la mesure de ${
m A_{sl}}$

 A_{sl} : asymétrie dans le mélange des mésons B_s se désintégrant de manière semi-leptonique.

Mesure de A_{sl}

- Both measurements seem to agree with each other
- Similar deviation from SM

Mesure de A_{sl} à LHCb

Difficile car:

- > Asymmétrie du détecteur,
- Asymmétrie de production (proton-proton au lieu de proton-antiproton à D0)
- Asymmétrie du bruit

Mesure phis SM

Valeur du MS difficile à mesurer: 34fb-1 nécessaires pour mesurer MS à 5sigma !

ATLAS et CMS perspectives

	ATLAS	CMS	LHCb
Integrated lumi. (fb ⁻¹) (1/4 of nominal year)	2.5	2.5	0.5
$B_s \rightarrow J/\psi \phi$ events	23k	27k	30k
Background (B/S)	0.30 Dominated by $J/\psi K^*$, $J/\psi K\pi$	0.33 Dominated by J/ψK*, J/ψKπ	2 90% prompt 10% long-lived
Mass resolution (MeV)	16.6*	14*	16.2
Proper time resolution (fs)	83	77	40
Angles	Acceptance and resolution considered to be neglectible /flat	Resolution neglected, non flat acceptance included	Acceptance and resolution have marginal effect
Flavour tagging	μ,e,Qjet (OS)	Not yet	µ,e,K, Qvtx, OS+SS
εD² (%)	4.6	0	6.2
Assumptions	One strong phase fixed	$\Delta\Gamma_s/\Gamma_s$ =0.2	See before
$\sigma(\Delta\Gamma_s/\Gamma_s)$	0.045	0.028	0.023
σ (2 β _s)	0.16	No estimated	0.06

Comparaison pour des collisions à 14 TeV !

Analyse de CMS: untagged !

Pas de séparation K/pi pour ATLAS et CMS

Mauvaise résolution sur le temps propre pour CMS et ATLAS comparé à LHCb

≻ LHCb

LHCb

- Les pairs de quarks bb sont principalement produite dans les directions avant/arrière lors des collisions protons-protons à 14TeV.
- Pour une section efficace bb ~500µb, et une luminosité 2x10^32 cm-2s-1

LHCb: résolution

VELO:

 $\sigma(IP) \sim (14+35/p_T(GeV)) \ \mu m \sigma(t) \sim (40-100) \ fs$

TRACKING

 ϵ =95% when p > 5 GeV and $1.9 < \eta < 4.9$ $\sigma(p)/p \sim 0.4\%$ $\sigma(m[B_s \rightarrow \mu \mu]) \sim 20$ MeV $\sigma(m[K^* \mu \mu]) \sim 15$ MeV

ECAL

 $\sigma(E)/E \sim (9.4/\sqrt{E(\text{GeV})} + 0.83) \times 10^{-2}$ $\sigma(m[B_s \rightarrow \phi \gamma]) \sim 90 \text{ MeV}$

MUON, RICH

 $\epsilon(K) \sim 88\%$ for 3% π mis-id $\epsilon(\mu) \sim 95\%$ for 5% π/K mis-id

LEVEL-0 TRIGGER

 $\epsilon(\mathbf{B}_{d,s} \rightarrow J/\psi \mathbf{X}) \sim 90\%$ $\epsilon(\mathbf{B}_{d,s} \rightarrow hh) \sim 50\%$

Sélection des premières données

 $B^{+} \rightarrow J/\psi K^{+}$

Decay mode	Offline
	cut
K ⁺	$\Delta \ln \mathcal{L}_{\mathbf{K}\pi} > 0$
	$\Delta \ln \mathcal{L}_{\mathrm{Kp}} > -2$
	kaons $\chi^2_{\text{track}}/\text{nDoF} < 4$
	$pT(K^+) > 1.3 GeV/c$
	$p(K^+) > 10 \text{GeV/c}$
${ m B^+} ightarrow { m J}\!/\!\psi { m K^+}$	$\chi^2_{\rm vtx}/{\rm nDoF} < 5$
	B^+ min IP χ^2 wrt PV < 25

B → I//µ₼	Decay mode	Cut
$D_{\rm s} = J/\psi\psi$	$\phi \rightarrow \mathrm{K}^+\mathrm{K}^-$	$\Delta \ln \mathcal{L}_{K\pi} > 0$
		kaons $\chi^2_{ m track}/ m nDoF < 10$
		$\chi^2_{\rm vtx}/{\rm nDoF}(\phi) < 20$
		$p_{\mathrm{T}}(\phi) > 1 \mathrm{GeV/c}$
		$ M(K^+K^-) - M(\phi) < \pm 12 \text{MeV/}c^2$
	${ m B}^0_{ m s} ightarrow { m J}\!/\!\psi\phi$	$\chi^2_{\rm vtx}/\rm nDoF < 5$
		$\mathrm{B_s^0}$ min IP χ^2 wrt PV $<$ 25

Premières données

Etiquetage de $B_s \rightarrow J/\psi \phi$

B_s→J/ψφ Tagging Efficiency = 57% Mistag rate ~ 33%