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The LSST scientific instrument

• A new telescope to be located on 
Cerra Pachon in Chile

– 8.4m dia. Mirror, 10 sq. degrees FOV

– 3 GPixel Camera, 6 filters

– Image available sky every 3 days

– 10-year survey begins in 2017

– Sensitivity – per “visit”:  24.5 mag;  survey:  27.5 mag

– First computing hardware systems to be purchased in 2015

      “Fast, deep, wide”

• Science Mission: observe the time-varying sky
– Dark Energy and the accelerating universe

– Comprehensive census Solar System objects

– Study optical transients

– Galactic Map

• Named top priority among
large ground-based initiatives
by NSF Astronomy Decadel
Survey



A Probe for Dark Energy

• Dark Energy, as characterized by w(z), can be 
measured via several observational techniques
– Each place an independent  

constraint that can be combined  
to break degeneracies

• LSST can support four techniques
– Weak lensing: cosmic shear as a function of z
– Baryon Acoustic Oscillations via galaxy distribution power 

spectrum
– Evolution of mass function of clusters 
– Redshifts and distances of Type Ia supernovae

Ref:   LSST Science Book: http://www.lsst.org/lsst/scibook



Computing Challenge:  weak lensing

• The weak lensing effect
– Shape of a distant galaxy is distorted as its light passes 

through massive foreground clusters
• In extreme, stretches into arcs

– Using equations of general relativity, it is possible to derive 
the cluster mass distribution from the distortions on the 
background galaxies



Computing Challenge:  weak lensing

• Challenge 1:  handle systematic effects
– Galaxy shape is distorted shape convolved with telescope 

PSF
– PSF changes with observation & with position (in FOV)
– Requires new algorithms in PSF fitting
– Multifit:  fit shapes in individual observations, not in coadd

• Use coadd to locate galaxies; use individual frames to fit
• Data orchestration challenge



Computing Challenge:  weak lensing

• Challenge 2:  deriving mass distribution
– Iterative, multi-parameter model fitting
– Computationally intensive



Some requirements driving architecture

• Short exposures
– Each field observed with 2 30-second exposures
– Data Rate:  ~13 TB/night

• Real-time Processing
– Process new fields within 1 minute of exposure
– Detect new sources, variable sources, and moving objects

• Via image subtraction
• Filter out known sources, update orbits of known solar system objects

– Issue a VOEvent to interested users announcing new objects
• Follow-up by spectroscopic telescope can measure redshift for Ia SNs

• Data-Release Processing
– Nightly processing repeated, completed a night within 24 hours
– Additional processing to create higher level products

• Co-added sky, Object Catalog, “Source” Catalog, Variable Object Catalog...
Released on a yearly basis

– For each year’s release, all previous years’ data will be reprocessed
• To take advantage of the latest algorithms, ensure uniform data products
Computing power needs to grow with time
Archive Center:  60 TF (Yr 1) –  270 TF (Yr 10)



Some requirements driving architecture

• Science Product Production
– Produced by Community, not by observatory

– Most science produced directly from analysis of catalogs
• Requires community search capabilities

• Categorized in to four performance classes 

– With associated populations: many short queries, few power queries

• Implies overall database performance requirements

• Access to all releases of catalogs

– Some science will require new pipeline processing
• Image-based processing

• Reprocessing using different parameters, user-provided algorithms

• “Power problems” will require substantial resources

– Where do computing resources come from
• LSST will provide (small) fraction of needed storage and processing for science 

product production by community

– Computing:  18 TF (Y1) – 50 TF (Y10)

– Storage:  3 PB (Y1) – 12 PB (Y10)

• Place Data near community (grid) computing platforms and networks

– Place Archive Center at NCSA



Cost Constraints

• Data Management Hardware budget for first light system:  ~$20M 
USD

• Data Volumes:
– Images: 13 TB/night raw, uncomp. → 47 TB/night calibrated, comp.
– Database: 

• Year 1:  19 Billion stars & galaxies from 290 Billion detections:  170 TB
• Year 10:  50 Billion stars & galaxies from 2.8 Trillion detections:  ~ 9 PB

– Users will require access to prior releases

• Constraining the cost of storage
– Permanent Storage restricted to:

• Raw images
• Released Co-added Sky
• Released Catalogs
Calibrated images stored temporarily, regenerated on demand

– Technology Choices:
• Long-term storage:  disk versus tape;  current baseline: tape
• Fast storage:  disk versus solid state;  current baseline: disk

– Hybrid systems for high performance (Greywulf research by Szalay, JHU)



Baseline Design Strategy

• Based on known technologies on vendor roadmaps
• Baseline revised each year
• Built from commodity technologies at time of 

purchase

• Plan for ongoing growth, replacement through l0-year 
life of the observatory
– Expect a complete replacement halfway through
– Periods of mixed technologies

• Develop model for costs evolving over time
– Based on vendor roadmaps, past experience
– Construction carries ~40% contingency



Sites and Centers
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Long-haul Networking
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• Mountain to Base
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• Base to US
Leased Dark Fiber:  2.5 Gbps (10 Gbps burst)
NOAO Evolution:
– 2010:  325 Mbps
– 2011:  500 Mbps
– 2012:  625 Mbps
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Scientific Networks (e.g. Nat'l Lambda Rail)
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Leased + US/International
Research Networks

Sites and Subsystems

• Site: a physical space 
in a building that hosts 
LSST DM subsystems

• Subsystem:  a defined 
combination of…

– configured hardware,
– software stack
– running processes
– responsible personnel

* Co-located DAC Sites
– Includes Community 

Services Subsystem 
(CSS)

– Shares infrastructure 
with DM facility

• Sites run with a 
common set of 
Subsystems
– Configured differently 

for the role of the site
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Hardware Summary

• Storage
– Three-tier Model

• Slow, deep storage

– Used for permanent copies of data products

– Tape library + “slow” disk cache

– 24 (Y1) – 90 (Y10) PB

• Medium, “near-line” storage

– Primarily to provide temporary storage for virtual data products

– Archive Site: 8 – 15 PB

• Fast storage – 2 types

– Scaled for capacity, support HP access to files by processing pipelines

– Scaled for data bandwidth, support HP access to database

» Scales with number of disk spindles 

» Implies 3x capacity at commodity disk sizes (3 – 30 PB)

• Computing
– Commodity cluster nodes (baseline: 16-core, 32 GB memory min.)

– Capacity:

• Real-time processing at Base Site:  ~10k cores (600 nodes),  60 TF

• Archive Center:  90 – 270 TF

• Data Access Centers:  25 – 58 TF

– Variants under consideration:  GPU-enhanced, SSD-enhanced



 

Middleware View of LSST processing

• Two categories of processing => two strategies
– Alert Production:  Real-time Processing

• Executed nightly

• Minimize I/O by keeping data in memory

– Stress data-parallelism; requires consistent routing of data

– Isolate and minimize parallel process cross-talk

• Parallelism implemented using MPI

– Data Release Production:  High-volume Processing
• Executed yearly but continuously

• We can trade performance for robustness

• Processing is more complex 

– with changing axes of parallelism

• Parallelism implemented using Condor

• Categories include some common needs
– Provenance tracking

– Logging under high levels of parallelism

– Encapsulated data access via logical identifiers



Orchestration

Orchestration layer launches pipelines on remote execution platforms

– Adapts to different types of platforms and the way they run applications

– LSST designed to run on own dedicated platforms or community platforms (e.g. NCSA public resources)

• Basis for preferring grid solutions

– Launch mechanisms currently supported as plug-ins

• Ssh

• Condor-g: generic interface to local batch system (e.g. PBS)

• Condor/Glide-in

– Agnostic about form of pipeline:  (Wrapped) black box app or app using LSST Pipeline Framework
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Orchestration

Pipelines communicate with each other and with Orchestration Layer via Events
– Event system based on the Java Messaging Framework (JMF)

– Pipeline log messages sent out as events for remote recording

– An Event Monitor analyses progress to detect possible problems

• Node failure, Runaway processes, ...

• Can signal orchestration layer to relaunch failed processing

– Inter-pipline communication via Events

• One pipeline may “wait” until an expected event with needed information arrives

• Event payloads are light:  one pipeline may tell another where to look for data 

Launch Platform

Execution Platform

Execution Platform

Execution Platform
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Event
Router

Event
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Log/
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The LSST Pipeline Framework

• Pipeline = a sequence of Stages
– “Harness” = container for stitching 

together stages

• Pipeline has N+1 threads
– Pipeline thread is the master 

controller

– Slice threads process a data-parallel 
unit of data

• e.g. CCD segment

– All threads have same basic structure

• Sequence of Stages
– Data queues sit b/w each stage

– Data is passed from one stage to 
another through queues via a 
“Clipboard”

• Clipboard = hierarchical dictionary

• Stages look for input data on clipboard 
and place new data items on it.



 

The Pipeline Harness

• I/O is done via dedicated I/O 
Stages
– Algorithm stages are isolated 

from I/O

– Output Stages can write products 
to disk at any time

• Processing is Event driven
– A data trigger event signals the 

first stage which exposure to 
process next

– Harness puts event data on 
clipboard

– Each stage is run in sequence

– After last stage is executed, 
pipeline returns to first stage, 
waiting for next event.



 

Alert Production (Real-time)

• Three MPI pipelines
– Image Processing and Source Detection (IPSD)

• Calibrate images, create difference images, detect variable sources

– Moving Objects Prediction (MOPS)
• To filter out known solar system objects

– Association Pipeline
• Filter out known objects, left with new sources
• Send sources to alert distribution system

• Long-running processes
– Events tell IPSD, MOPS when new data is ready
– Data is already staged (out-of-band)
– IPSD, MOPS signal Association pipeline via Event



 

Data Release Pipelines (High-Volume)

• Sequencing is more 
complicated
– Many interdependencies

– Shifting “axes of parallelism”
• By CCD segment

• By sky-tile

• By object

• Real-time is not required
– Trade performance for 

robustness

– Do more caching of data to 
disk

– Leverage existing 
technology:  
Condor/DAGMan



 

Data Release Pipelines

• Short and Narrow pipelines

– Single slice, operating on single 
data-parallel unit of data

– Only one unit will pass through 
pipeline per instantiation

• Homegrown data-driven, 
opportunistic schedule

• External process for staging 
input data

– Volume to process >> capacity of 
disk

– Will listen for events indicating 
progress of pipelines

– Will stage data from mass 
storage before needed



 

JobOffice:  
Opportunistic, Data-Driven scheduler

• DAGMan commonly used to manage interdependencies 
between Condor Jobs
– To create DAG, must collect all knowledge about inputs/outputs, 

trace flow, a priori

– Information management does not scale easily

• Homegrown “Job Office” inspired by opportunistic 
blackboard-based pipeline systems used in astronomy 
– Each pipeline type has a manager (i.e. JobOffice) configured to 

know what type of data it operates on 

– JobOffice converts events about available data into candidate jobs

– When a Job is ready (all prerequisites available), sends job to 
available pipeline

– When pipeline completes, it announces availability of its output 
products.



Issues and On-going Questions

• How realistic are our technology predictions?
– Can contingency cover its inaccuracies?

• Can we effectively use the calculated TF of the proposed 
systems?
– Moore’s Law is being met via multiple cores per chip

– Effective use of multi-core systems is a software challenge
• Bottleneck: memory bandwidth

– GPU-enhanced clusters
• Which of our pipelines can take advantage?  How will it affect our software 

development?

• Storage Technology Choices
– How will cost/performance curve for SSD vs. HDD evolve?

• Will SSD play a role in high performance computing component?

– How will cost/performance curve for disk vs. tape evolve?
• Will disk play a bigger in long-term storage?

• Cost model currently described in terms of a hybrid system

• Will technologies like MAID become important?



Issues and On-going Questions

• How will down-selecting on grid technologies affect overall 
architecture
– Be less generic in order to take advantage of unique product features

– Fault tolerance is important

• How do we implement fault tolerance at all levels
– We have a plan, strategies;  not all have been prototyped, yet

• Role of Virtualization
– Community processing:  means for providing user-supplied 

algorithms in a secure environment

– Static allocation versus dynamic allocation of resources

– Snapshots as an alternative to checkpointing



Roadmap to First Light

• Two more years of R&D phase
– Further prototyping
– Refine to final design
– Significant software base in place

• Construction begins 2012
• First Light:  2016

• Operations:  2017

• Data Releases:
– Two data release in first year
– Yearly after that
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