Constructing the Brownian sphere from a
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Brownian geometry

Goal : Construct and study some "canonical random surfaces"
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Brownian geometry

Goal : Construct and study some "canonical random surfaces"

More precisely, we want to consider random surfaces:
= that arise as the scaling limit of discrete models, i.e. planar maps

= that have some universality property
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Plan of the talk

1. A quick history of the Brownian sphere

2. Labelled unicycles and planar maps

3. Toward a new construction
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A bit of history

A quick history of
the Brownian sphere




Planar maps

Definition
A planar map is the embedding of a finite graph G = (V, E) in the sphere S? so that :

= The edges do not cross
= Each face is homeomorphic to the unit disk
where faces are the complements of the connected components of the embedding in S2.

We consider planar maps up to homeomorphism of the sphere, and as metric spaces
(equipped with the graph distance).
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Planar maps

A face of degree 7

A vertex

A corner
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Quadrangulations

Definition

A quadrangulation is a planar map where each face has degree 4. We denote by Q, the
set of quadrangulations with n faces, and Q;, the set of pointed quadrangulations with n
faces.

General question

What is the typical behavior of a large planar map ?
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Labelled tree

Fix a rooted planar tree t with root vertex ug. An admissible labelling function on t is a
function £ : V(t) — Z such that

" f(uo) =0.

» |{(u) —€(v)| £ 1if uand v are neighbors.
Let T, be the set of all pairs (t, ) of labelled tree with n edges.
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The CVS bijection
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The CVS bijection
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The CVS bijection
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The CVS bijection

14/83



The CVS bijection
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The CVS bijection
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The CVS bijection
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The CVS bijection

18/83



The CVS bijection
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The CVS bijection
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The CVS bijection

Theorem (Cori, Vauquelin, 1981 and Schaeffer, 1998)

The pointed graph (q, vi) obtained by this procedure is a pointed quadrangulation with n
faces. Moreover, it gives a bijection between T, X {-1,1} and Q.
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The CVS bijection

Theorem (Cori, Vauquelin, 1981 and Schaeffer, 1998)

The pointed graph (q, vi) obtained by this procedure is a pointed quadrangulation with n
faces. Moreover, it gives a bijection between T, X {-1,1} and Q.

To study random quadrangulations :
= Choose a random labelled tree with n edges and a uniform labelling (T, ¢,)
= Apply the CVS bijection
= Study the properties of the quadrangulation through the bijection
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Some properties of the CVS bijection

Proposition

For every v € q, we have
dg(v, v2) = £(v) = £(w.).

Moreover, for every u,v € q,

dq(u,v) = [t(u) = £(v)].
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Towards a scaling limit

0 2 CVS bijection
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Towards a scaling limit

CVS bijection

Scaling
limit

ngg%m
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Towards a scaling limit

° 2 CVS bijection

Scaling (Aldous, Le Gall,
limit Chassaing,
Schaeffer...)

e
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Towards a scaling limit

0 2 CVS bijection

Scaling
limit
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Towards a scaling limit

0 2 CVS bijection
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Towards a scaling limit

0 2 CVS bijection

Scaling Scaling
limit limit?

@%%%% Continuous

% CVS bijection
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Towards a scaling limit

0 2 CVS bijection
€ >

Scaling Scaling
limit limit?
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The Brownian sphere

Theorem (Le Gall, Miermont, 2011)

Let @, be a uniform random quadrangulation with n faces. There exists a random metric
space (S, D) called the Brownian sphere such that

1/4
(Qn, (3) dg,) 9, (s,D)

n—oo

8n

for the Gromov-Hausdorff topology.
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How to build the Brownian sphere

The Brownian sphere (S, D) is constructed as a quotient of a CRT (Continuum random
tree) 7 with “uniform” labels, obtained with a “Continuous CVS bijection”. This tree is
obtained under a probability measure Nél). It is also naturally equipped with a volume
measure u.
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How to build the Brownian sphere

Let £, be the minimal label on the tree 7, and x, the corresponding point in the
Brownian sphere. For every x € S, we have

D(X7 X*) = gX _5*

Proposition (Le Gall-Paulin, Miermont, 2008)

Almost surely, the Brownian sphere is homeomorphic to the sphere S? and has Hausdorff
dimension 4.

Many other properties (Le Gall, Miermont, Curien, Bettinelli, Riera, Gwynne, Miller,
Metz-Donnadieu ...)
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Some problems

Very useful to :

= Do 1-point estimates

= Study geodesics toward a point
Not very useful to :

» Study distances toward several points simultaneously
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Some problems

Very useful to :

= Do 1-point estimates

= Study geodesics toward a point
Not very useful to :

» Study distances toward several points simultaneously

Question
Can we obtain a new construction of the Brownian sphere ?

Already obtained for other Brownian surfaces (Bettinelli-Miermont, Le Gall,
Caraceni-Curien, Le Gall-Riera ...)
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Here we go again

Labelled unicycles

and planar maps




The unicycles appear

Definition

A unicycle is a planar map with two faces (labelled f; and 7). A well-labelled unicycle
is a unicycle equipped with a labelling function.
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Miermont bijection
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Miermont bijection
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Miermont bijection
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Miermont bijection
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Miermont bijection
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Miermont bijection
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Miermont bijection
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Sadness

Not a bijection ﬁ
with quadrangulations
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Sadness

Not a bijection ﬁ
with quadrangulations




Keep track of the delay

Then for every u € q, we have
ty = min(dq(u, vi) + €y, dq(u, v2) + €,,).

Therefore, we are interested in 6 = ¢, — {\,.

Definition
A delayed quadrangulation is a tuple (q, vo, v1,d), where :
= ¢ is a rooted quadrangulations,
= v; and v, are two distinct vertices of q,
= § is an integer with the same parity as dq(v1, v2) such that [0] < dq(v1, v2).
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It’s a bijection !

Theorem (Miermont, 2007)

The previous procedure is a bijection between the set of well-labelled unicycle with n
edges and the set of delayed quadrangulations with n faces.

Remark : this is a particular case of a more general result.
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Properties of the Miermont bijection

Proposition

For every u € f;, we have
dq(u,v1) =ty =4y,

whereas for every u € f>, we have

dq(u, V2) =4y - {7\/2,
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Properties of the Miermont bijection
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Last but not least

Toward a
new construction
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Towards a scaling limit ... again
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Towards a scaling limit ... again

Scaling
limit
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The continuous labelled unicycle
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The continuous labelled unicycle
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The continuous labelled unicycle

§
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An explicit density

The joint law of (L, A) has density

1 1 x1/2 x?
(e X IO H17aE (1 4) v (y(1— y))32 " (_ 2y(1- y)) '

= The labels on the cycle evolve as a Brownian excursion of duration £

= Every subtree is a labelled CRT with a random volume
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Towards a scaling limit ... again

N
Miermont bijection ﬁ\
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Towards a scaling limit ... again

Scaling Not the Brownian sphere! - Scaling
limit limit ?

Continuous
Miermont bijection
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The biased Brownian sphere

Let (S, D, x., X+, i) be a standard Brownian sphere (S, D, u) with two distinguished
points sampled according to the measure u.

Definition

The biased Brownian sphere (Sp, D, x., X4, i, A) is defined by the following formula, valid
for every non-negative measurable function f :

1
E[f(Sb, D’ X )_<*a M’ A)] = —E

D (X, X+ )
f D, x., Xx, i, t)dt| .
2E[DOo, %] / (S D, XX 1, )

D (5, Xx)

= The marginal (Sp, X, X.) has the law of the standard Brownian sphere biased by the
distance between x, and X,

= Conditionally on (Sp, x, X.), the random variable A is uniform on
[_D(X*, ?*)’ D(X*7?*)]
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Constructing the biased Brownian sphere

Let (Q,gb) dgr,x(b),y,sb),A,,) be uniform random delayed quadrangulation with n faces.

Theorem (M, 2025)

We have the convergence

9 1/4 9 1/4 (d)
( I(‘)b)a (&) dgr, r(lb)’ y[gb)’ (8[‘)) An (Sb, D X*, X*, A)

Moreover, the biased Brownian sphere has an explicit construction as a quotient of the
labelled unicycle T,

More precisely, we can define a pseudo-distance D on U™ such that

Sp=UY/{D=0}.
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Where is the delay ?
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Properties of the distance

Proposition

For every x € f1, we have
D(x, x.) = tx — €,

whereas for every x € f, we have
D(x,X,) = €y — Cs.

In particular, B
D(x:, X)) = —(Cs + £.).

Moreover, for every x,y, we have

D(x,y) z [tx = {y].
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Sketch of the proof

Step 1 : Use the convergence of uniform quadrangulations towards the Brownian sphere.

For every ne N

E [ZéneA(Qn,Xn,yn) F(Qn, dgra Xns Yn» 6n)]
E [(dQn(Xn’y") - 1)+]

where (Qp, Xn, yn) is uniformly distributed on the set of bi-pointed quadrangulations with
n faces and A(Q, x, y) is the set of admissible delays of (Q, x, y).

s

B[O 5 /2, a0 =

—> We just need to control the Radon-Nikodym derivative !
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Sketch of the proof

Step 2 : Look for a link with another model for which the scaling limit is known.
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Sketch of the proof

— The scaling limit of quadrangle with geodesic sides Q is known !
(Bettinelli-Miermont)
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How to relate delayed quadrangulations and quadrangles

Cut alongside both geodesics

Glue the geodesics by pair
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Another diagram

Step 3 : use this link to obtain a scaling limit, he showed that it can be constructed as a
quotient of UM .

Uniform delayed Gluing geodesics Uniform discrete
quadrangulations quadrilaterals
= A
= 2
2 |
Some space Gluing geodesics Continuous

quadrilaterals

The diagram commutes because the gluing of geodesics is a continuous operation !
(Bettinelli-Miermont)
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Delayed Voronor cells

For any metric space (X, d) with two distinguished points x and y, and any parameter
6 € (—d(x,y),d(x,y)), we define

Os ={ze X:d(x,z) <d(y,z) + 6},
Os :={zeX:d(x,z) >d(y,z) + 6}.

Definition

The sets O and O are called the 6-delayed Voronoi cells of X with respect to x and y.
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Delayed Voronoi cells in the Brownian sphere

Proposition

The faces of UV exactly correspond to the A-Voronoi cells of Sp, and the cycle C
correspond to the boundary of these cells.
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Delayed Voronoi cells in the Brownian sphere

Proposition

The faces of UV exactly correspond to the A-Voronoi cells of Sp, and the cycle C
correspond to the boundary of these cells.

Corollary

Let u(®x) and P(O,) stand for the volume and the perimeter of ®x. Then, the law of
(P(Onr), u(®p)) has density

1 1 x1/2 x2
(e RxI0 H17a 0 (1/4) v (y(1— )32 " (‘2y<1 = y)) ‘

In particular, u(®,) is a Beta(1/4,1/4) random variable.
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Getting rid of the bias

Recall that _ _
D(xe,x.) = —(€e +€,) and A=¢,—4..

Therefore,

Conditioning on A and D(x,,x,) «— Conditioning on ¢, and ¢,
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Getting rid of the bias

Recall that _ _
D(xe,x.) = —(€e +€,) and A=¢,—4..

Therefore,

Conditioning on A and D(x,,x,) «— Conditioning on ¢, and ¢,

Problem : | cannot even compute P(¢, < —a, £, < —b) ...
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Unicycle with free volume

= Sample the length of the cycle with the infinite measure ct=3/2dt

= The labels on the cycle evolve as a Brownian excursion e with the appropriate
duration
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Unicycle with free volume

= Conditionnaly on e, the forests on each side are distributed as independent Poisson
point measures with intensity

21[0’0-] (t)dtNet(dW).
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Properties of the free biased Brownian sphere

Let U be the (infinite) measure used to construct U.

Proposition
For every a > 0, we have
I'(1/4)
U(u(U) >a) = ————.
(u(U) > 9) =

Moreover, the unicycle U conditioned to have p(U) = 1 has the law of UM
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Properties of the free biased Brownian sphere

Let U be the (infinite) measure used to construct U.

Proposition
For every a > 0, we have
I'(1/4)
U(u(U) >a) = ————.
(u(U) > 9) =

Moreover, the unicycle U conditioned to have p(U) = 1 has the law of UM

Proposition
For every a, b > 0, we have

1

U6, < —-a, b, < —b) = .
e=ab <= a+b
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Fixing ¢, and ¢,

Uu [a,b]

é(u,h)
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Fixing ¢, and ¢,

u[“fb] PP hE
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ixing ¢, and ¢,

F
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Weird but explicit processes

The law of the random variable &(@?) is absolutely continuous with respect to Ito’s
excursion measure n(de), with density

N dsdt o1 1
18(a+5) (-/o ./o <e5+a>3<et+b>3)exp(_3/o ((eu+a>2+<eu+b>2)d”)'
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Weird but explicit processes

The law of the random variable &(@?) is absolutely continuous with respect to Ito’s
excursion measure n(de), with density

N dsdt o1 1
18(a+5) (/o /o <es+a>3<et+b>3)exp(_3/o ((eu+a>2+<eu+b>2)d”)'

where to graft the two atoms conditioning the two Poisson point measures
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A disintegration formula

Proposition

Let F and G be measurable non-negative functions. Then

U (F(—f*, —Z*)G(fu)) = / F(a, b)——

Ry xRy

Hence, the unicycle U conditioned to have ¢,

(a+

=—aand,

]E [G(u=P))] dadb.

= —b has the law of U'?P).
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The new construction, finally

Theorem (M, 2025)

For every a, b > 0, the random surface associated to U@:D) s distributed as a free
Brownian sphere S with two distinguished points at distance a + b. Moreover, the faces
of U@P) correspond to the (a — b)-delayed Voronoi cells of S.
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Applications and perspectives

A couple of applications :
= Explicit distributions of several quantities related to Voronoi cells

= Study of the local behaviour around a geodesic

In the future :
= More results about Voronoi cells
= Explicit distributions for the Brownian annulus ?

= Study of exceptional delays ?
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The End

Ly G
~ Thank you for
your attention!
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