

Constructing the Brownian sphere from a random unicycle

Mathieu Mourichoux

Journée carte à Marne-la-vallée

Brownian geometry

Goal : Construct and study some "canonical random surfaces"

Brownian geometry

Goal : Construct and study some "**canonical random surfaces**"

More precisely, we want to consider random surfaces:

- that arise as the scaling limit of discrete models, i.e. planar maps
- that have some universality property

Plan of the talk

1. A quick history of the Brownian sphere
2. Labelled unicycles and planar maps
3. Toward a new construction

A bit of history

A quick history of the Brownian sphere

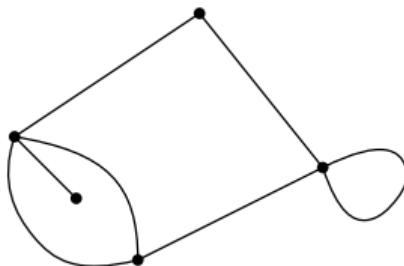
Planar maps

Definition

A planar map is the embedding of a finite graph $G = (V, E)$ in the sphere \mathbb{S}^2 so that :

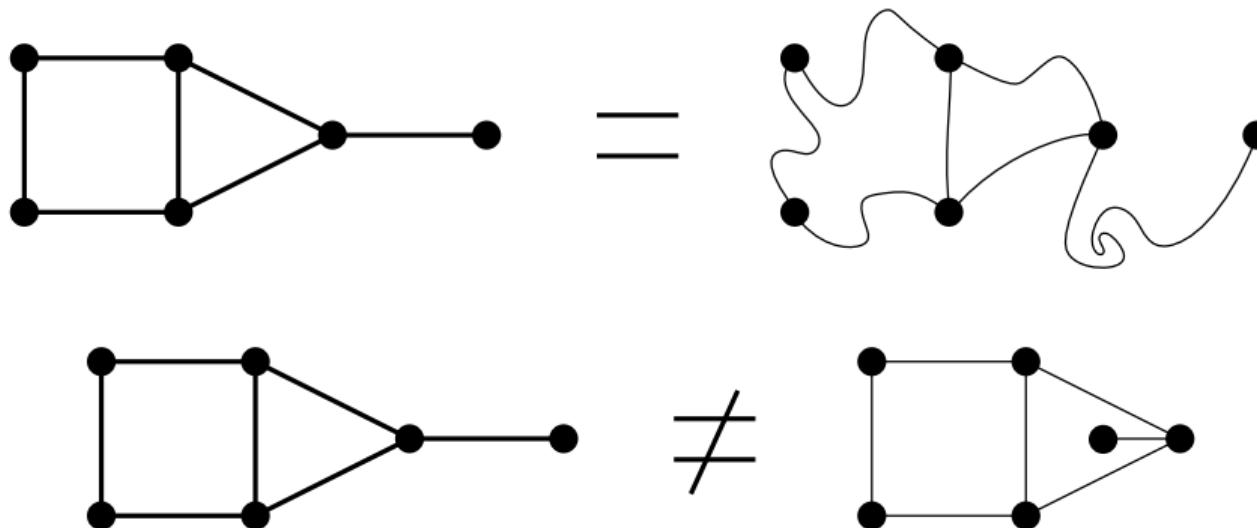
- The edges do not cross
- Each face is homeomorphic to the unit disk

where faces are the complements of the connected components of the embedding in \mathbb{S}^2 .

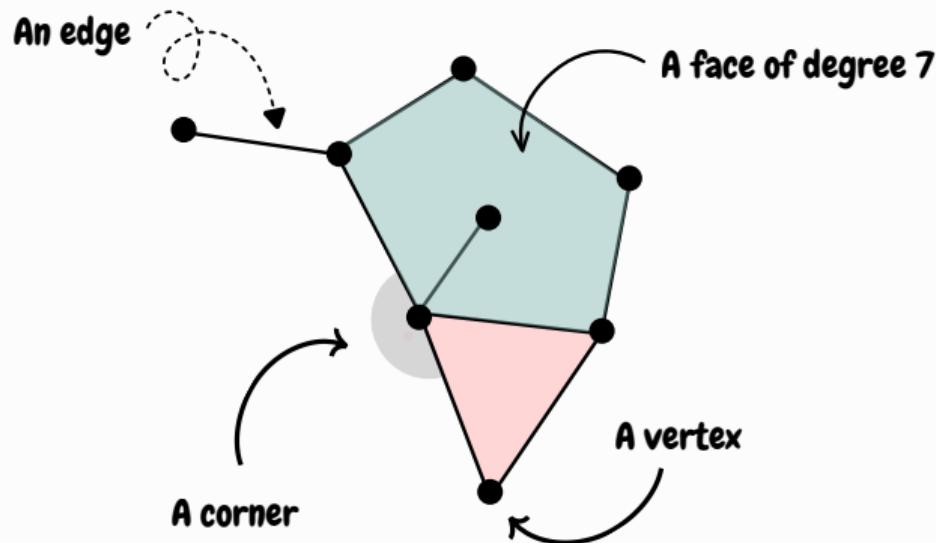


We consider planar maps up to homeomorphism of the sphere, and as metric spaces (equipped with the graph distance).

Planar maps



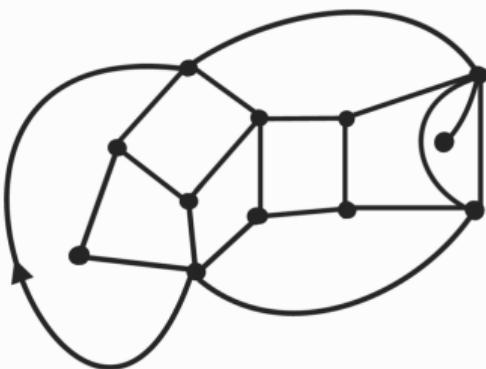
Planar maps



Quadrangulations

Definition

A quadrangulation is a planar map where each face has degree 4. We denote by Q_n the set of quadrangulations with n faces, and Q_n^* the set of pointed quadrangulations with n faces.



General question

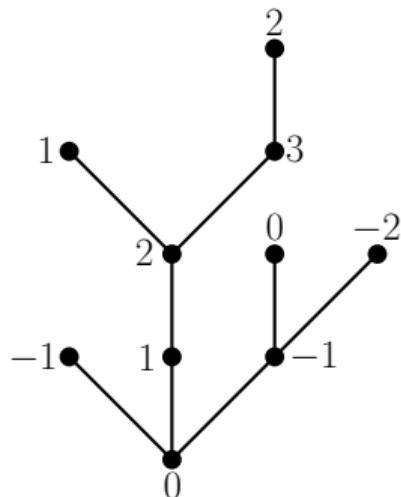
What is the typical behavior of a large planar map ?

Labelled tree

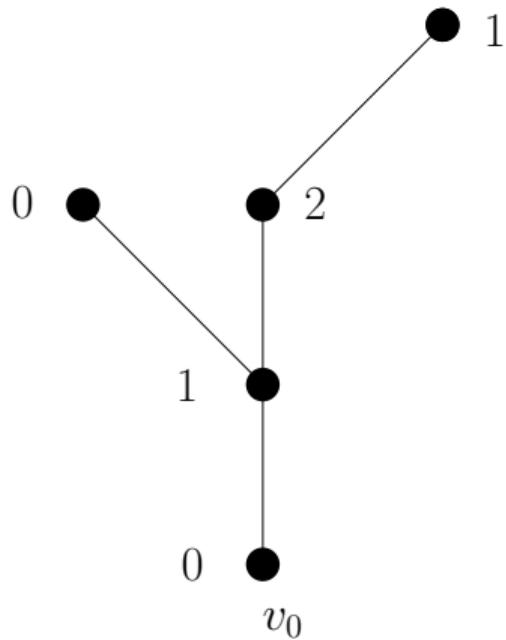
Fix a rooted planar tree \mathbf{t} with root vertex u_0 . An admissible labelling function on \mathbf{t} is a function $\ell : V(\mathbf{t}) \rightarrow \mathbb{Z}$ such that

- $\ell(u_0) = 0$.
- $|\ell(u) - \ell(v)| \leq 1$ if u and v are neighbors.

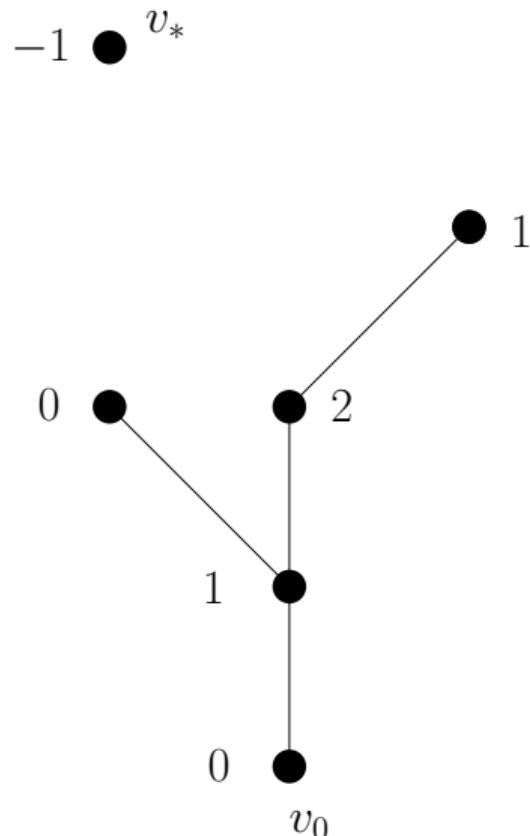
Let \mathbb{T}_n be the set of all pairs (\mathbf{t}, ℓ) of labelled tree with n edges.



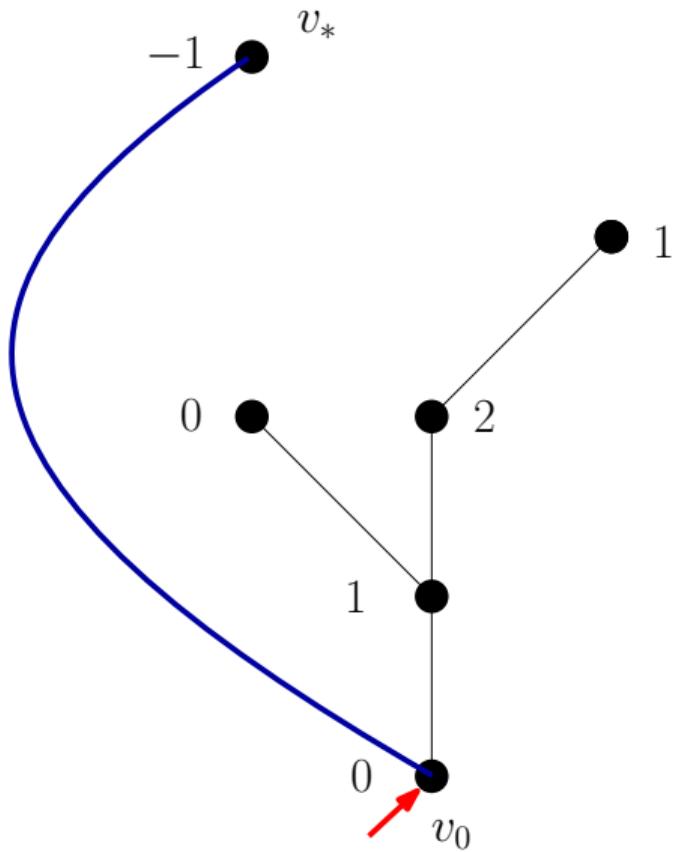
The CVS bijection



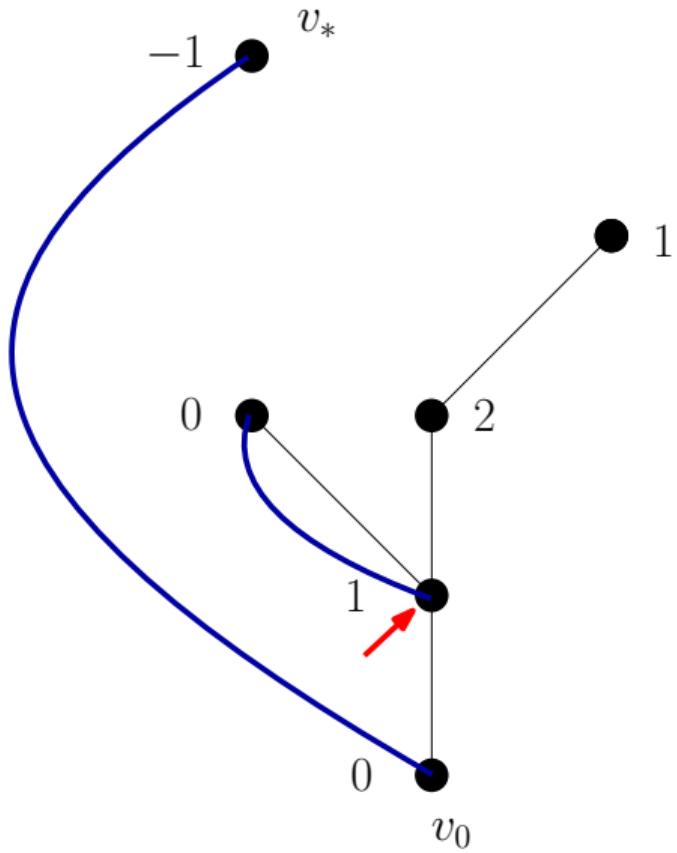
The CVS bijection



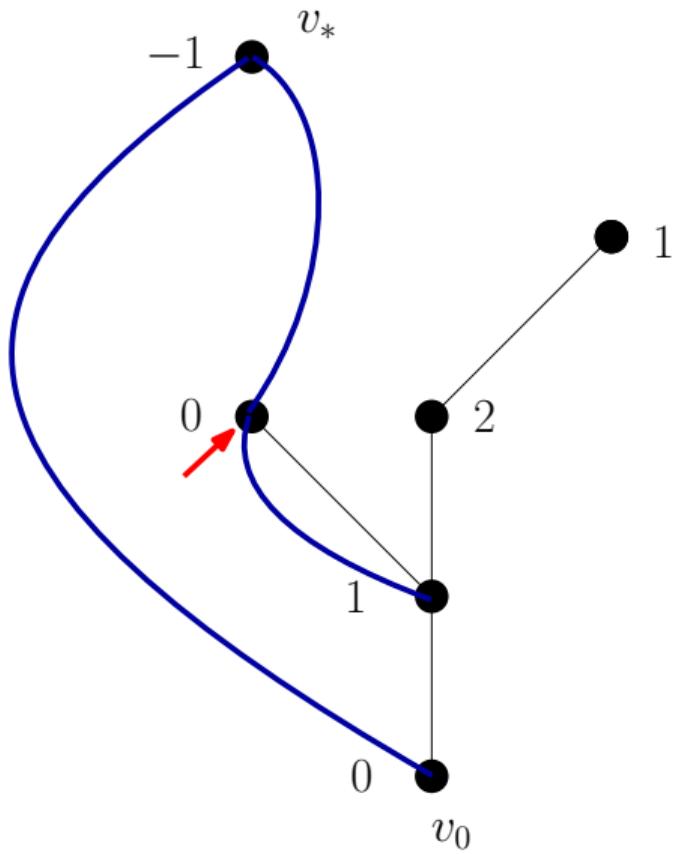
The CVS bijection



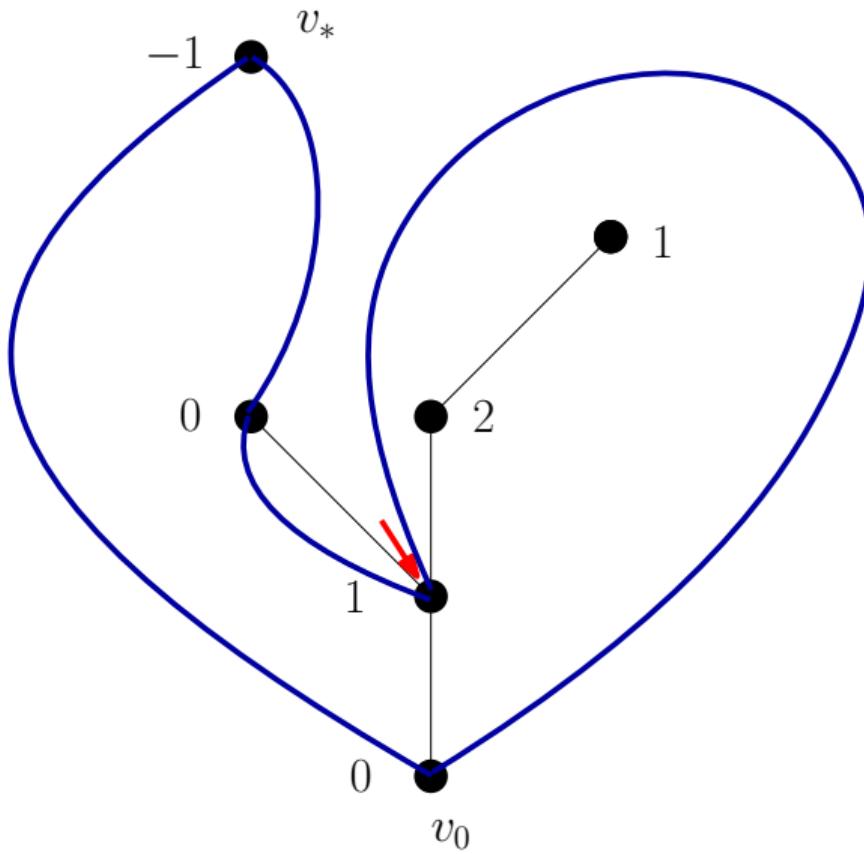
The CVS bijection



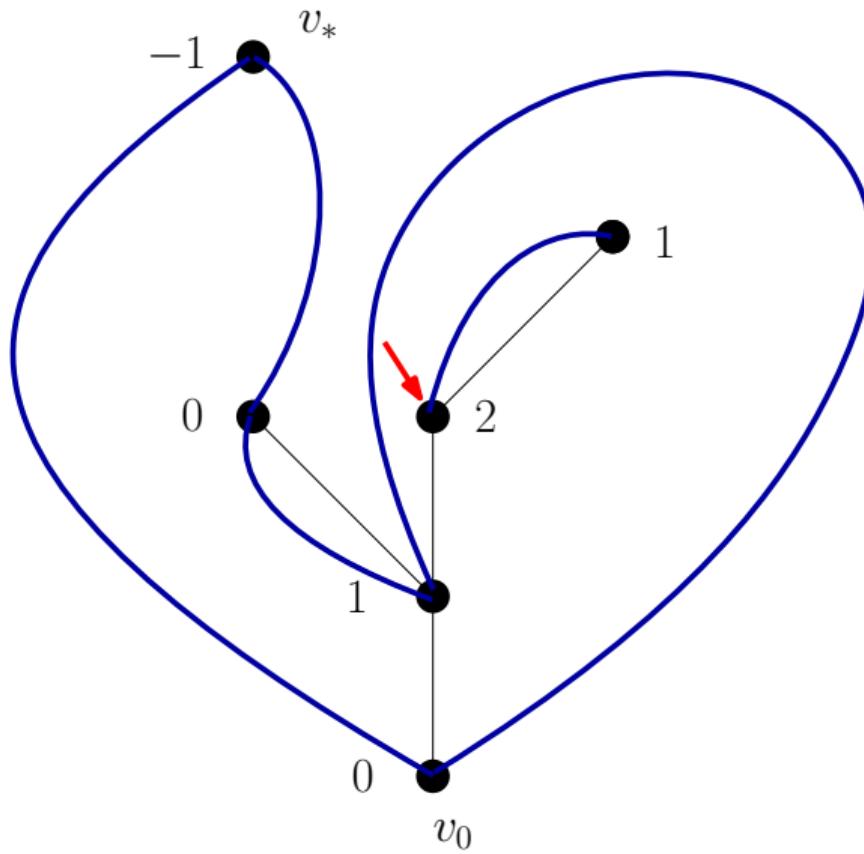
The CVS bijection



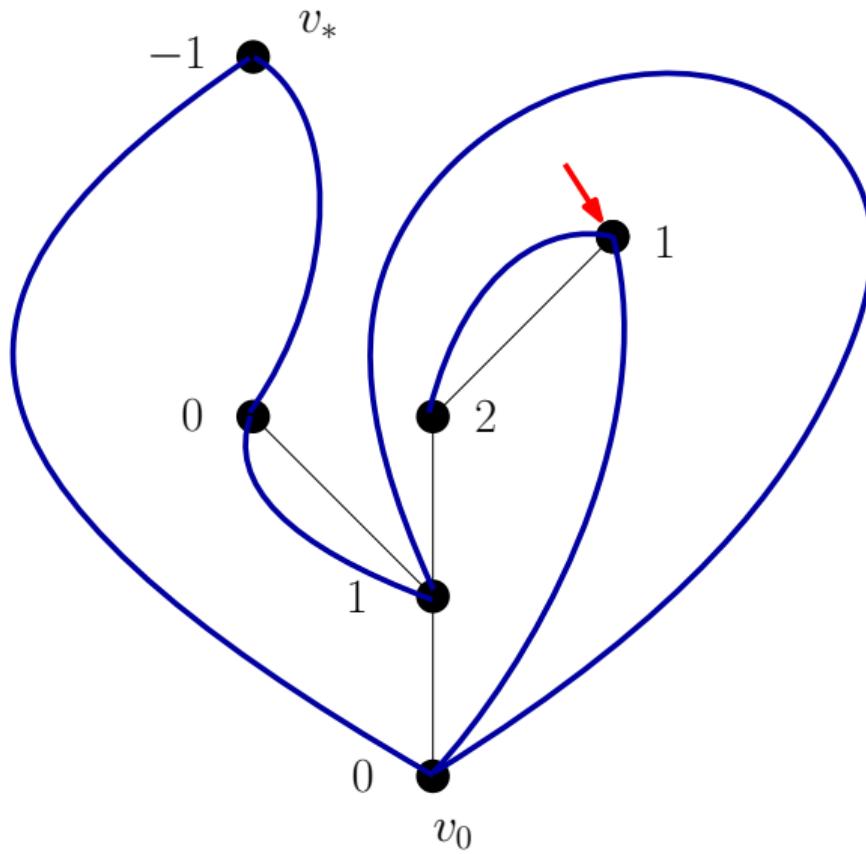
The CVS bijection



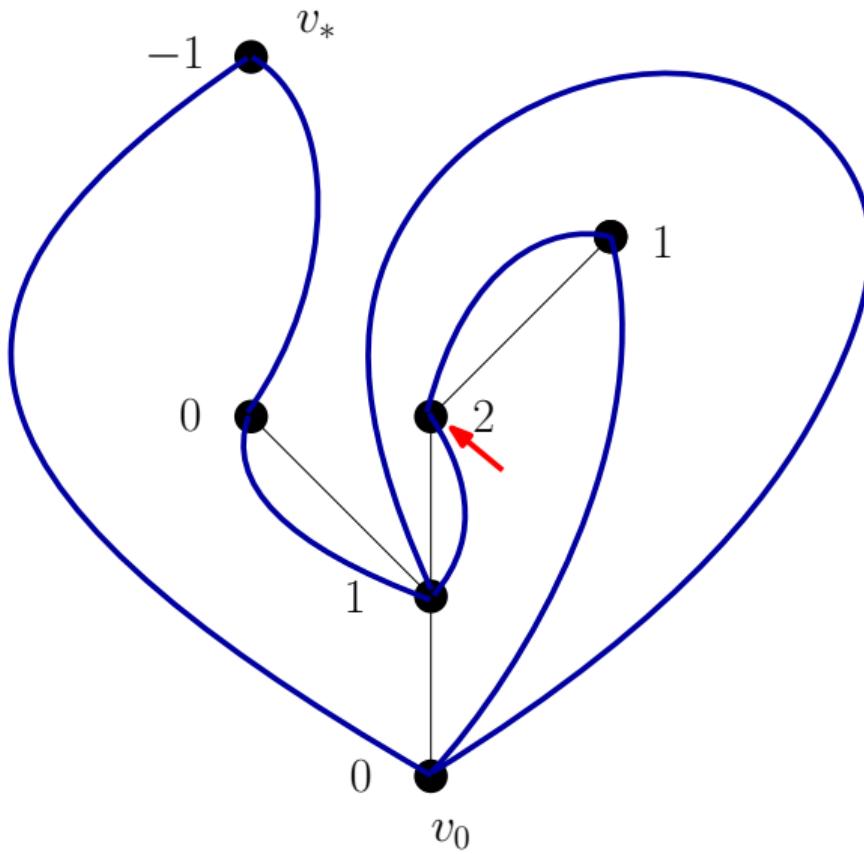
The CVS bijection



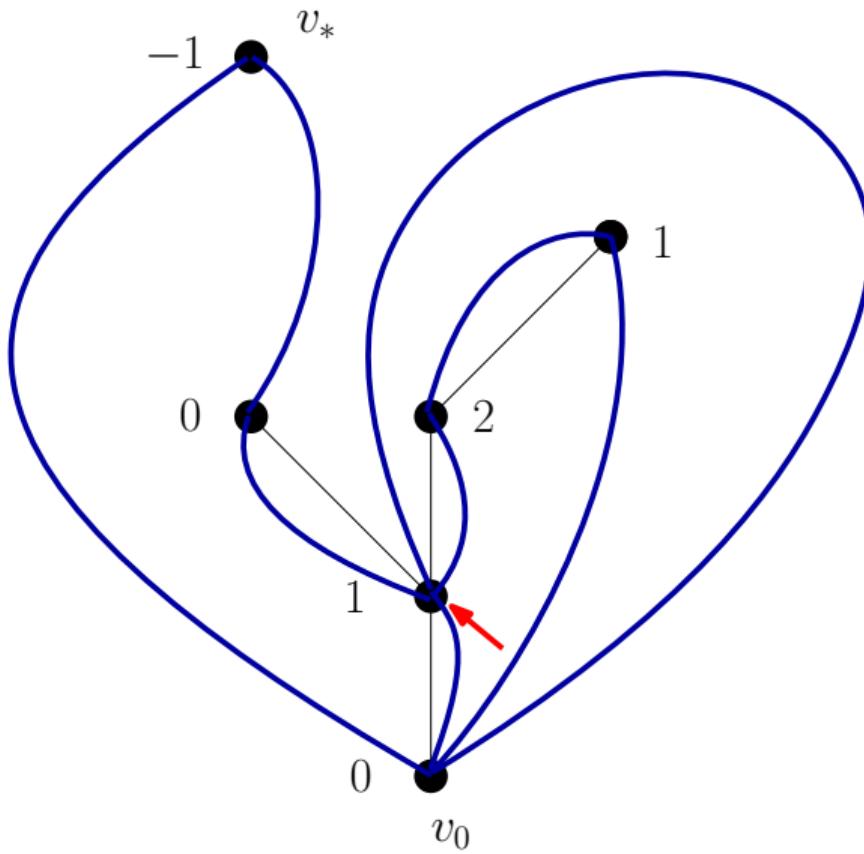
The CVS bijection



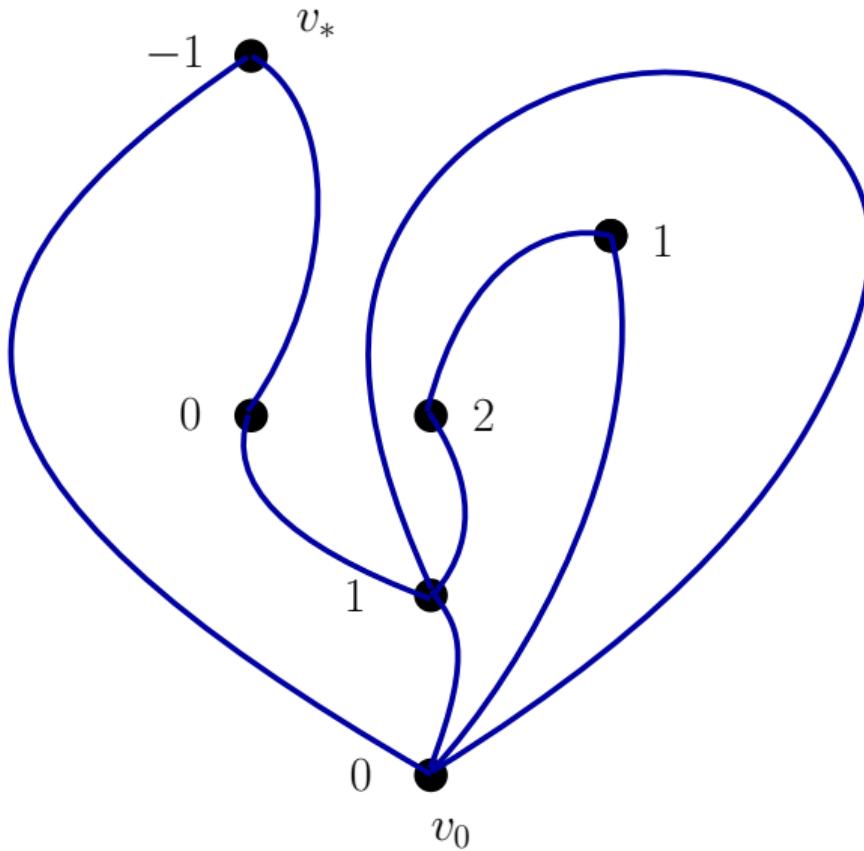
The CVS bijection



The CVS bijection



The CVS bijection



The CVS bijection

Theorem (Cori, Vauquelin, 1981 and Schaeffer, 1998)

The pointed graph (\mathbf{q}, v_*) obtained by this procedure is a pointed quadrangulation with n faces. Moreover, it gives a bijection between $\mathbb{T}_n \times \{-1, 1\}$ and Q_n^\bullet .

The CVS bijection

Theorem (Cori, Vauquelin, 1981 and Schaeffer, 1998)

The pointed graph (\mathbf{q}, v_*) obtained by this procedure is a pointed quadrangulation with n faces. Moreover, it gives a bijection between $\mathbb{T}_n \times \{-1, 1\}$ and Q_n^\bullet .

To study random quadrangulations :

- Choose a random labelled tree with n edges and a uniform labelling (T_n, ℓ_n)
- Apply the CVS bijection
- Study the properties of the quadrangulation through the bijection

Some properties of the CVS bijection

Proposition

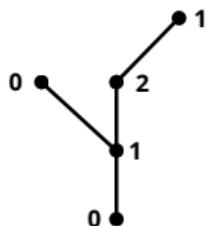
For every $v \in \mathbf{q}$, we have

$$d_{\mathbf{q}}(v, v_*) = \ell(v) - \ell(v_*).$$

Moreover, for every $u, v \in \mathbf{q}$,

$$d_{\mathbf{q}}(u, v) \geq |\ell(u) - \ell(v)|.$$

Towards a scaling limit

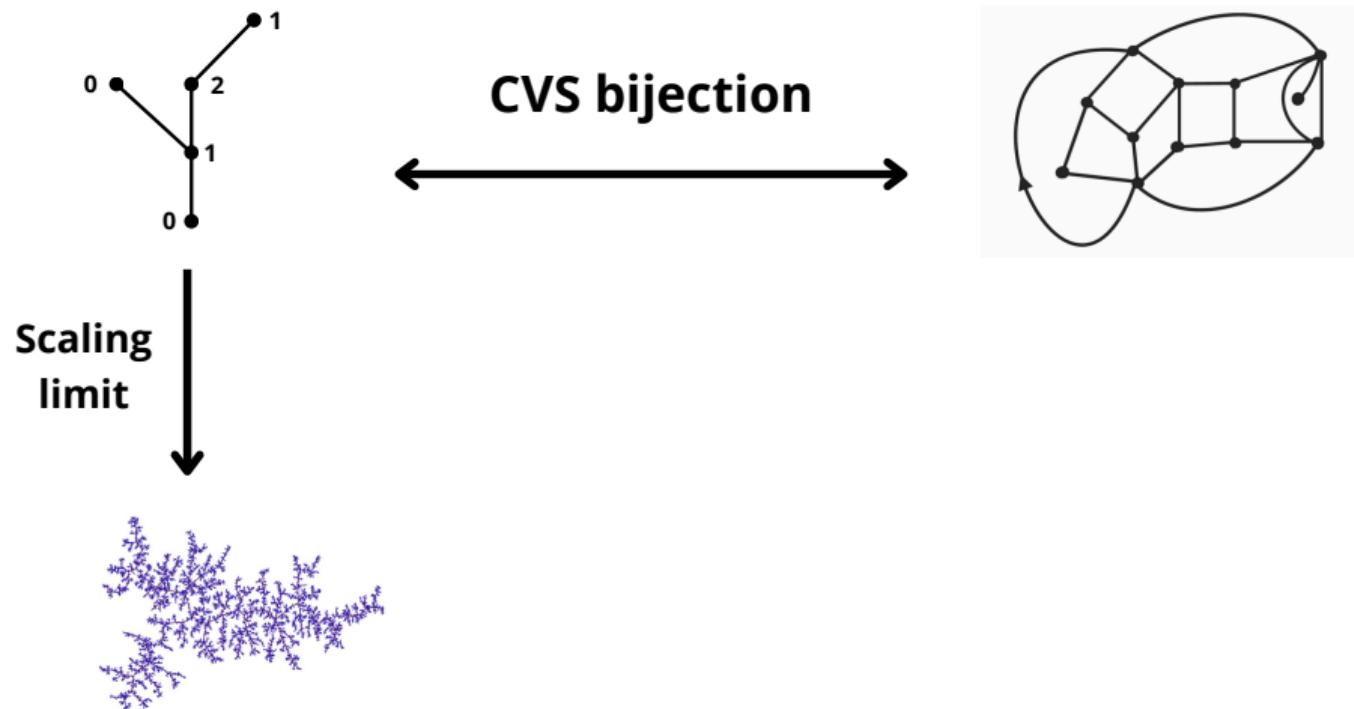


CVS bijection

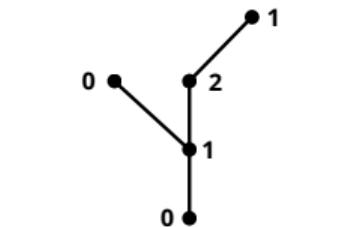
A horizontal double-headed arrow with the text "CVS bijection" in bold between the two diagrams.



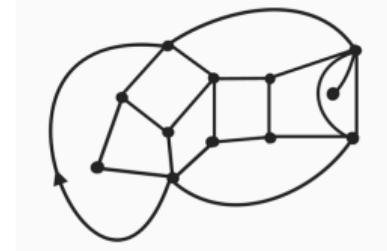
Towards a scaling limit



Towards a scaling limit

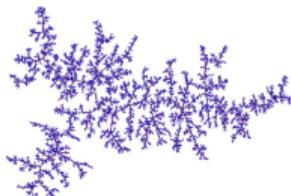


CVS bijection

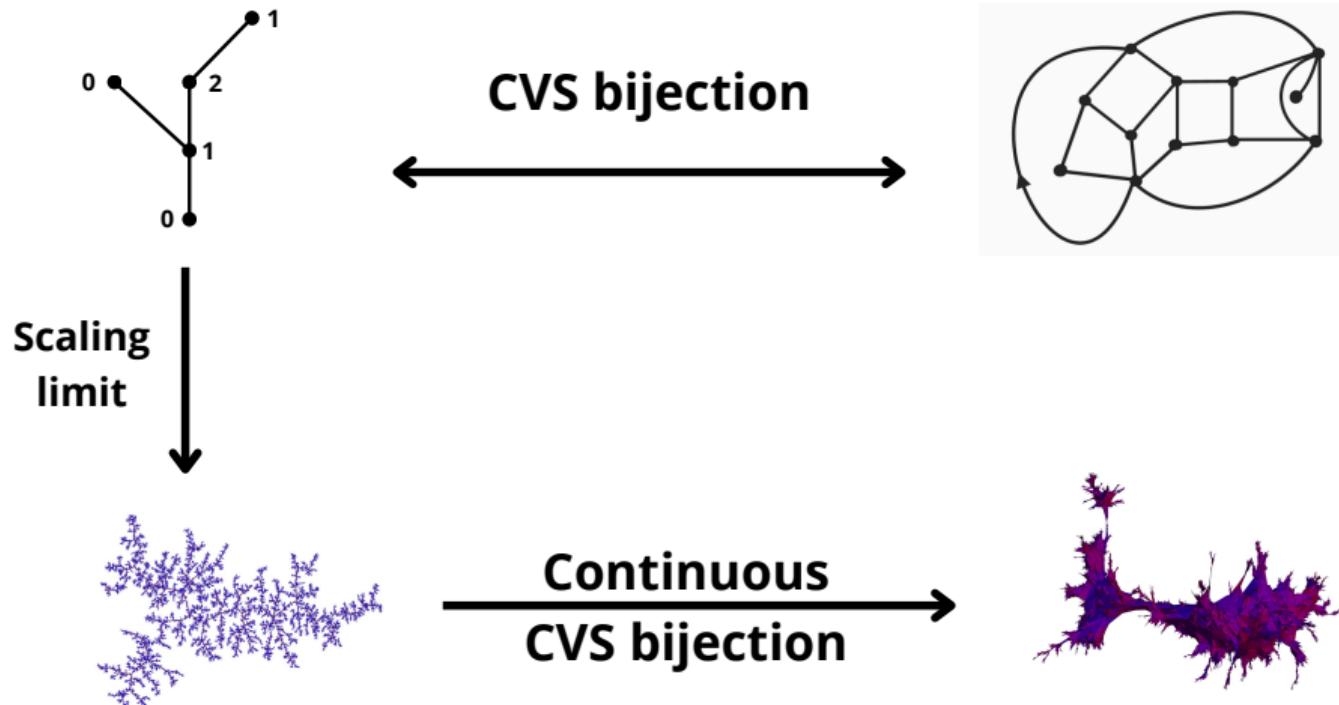


Scaling limit
↓

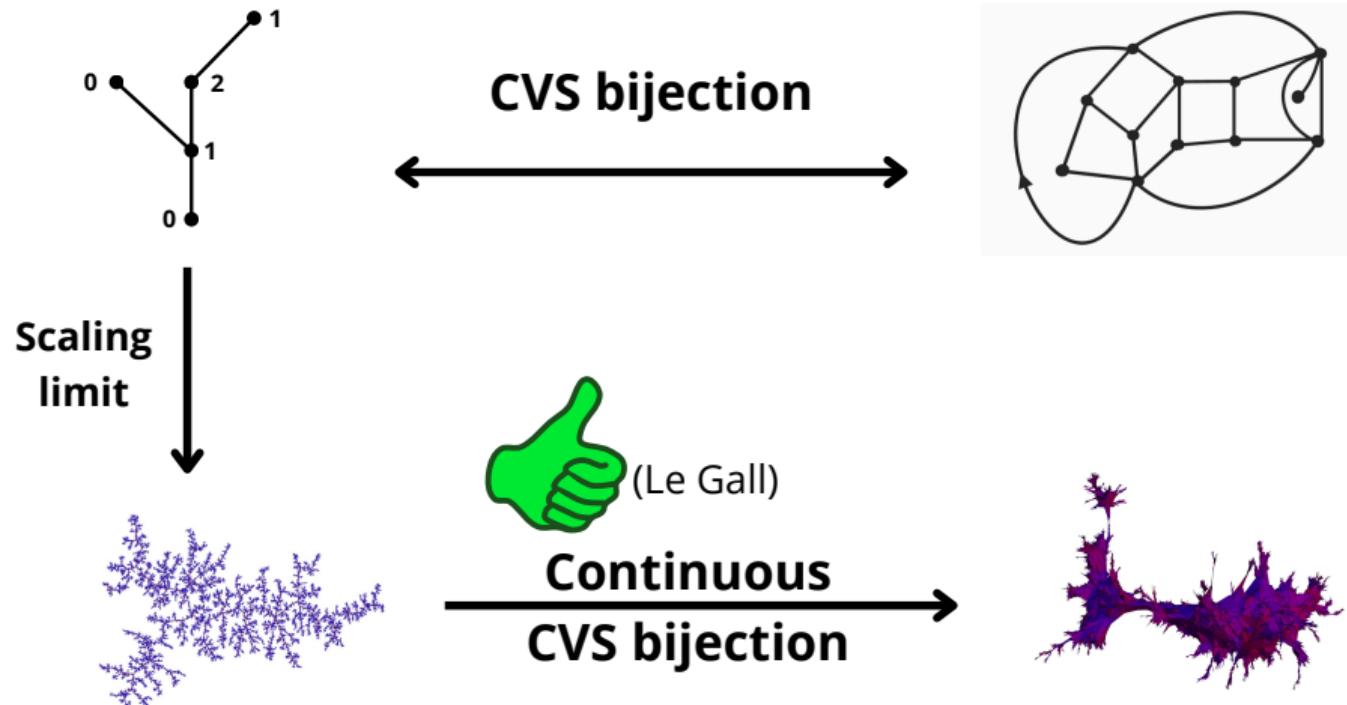
(Aldous, Le Gall,
Chassaing,
Schaeffer...)



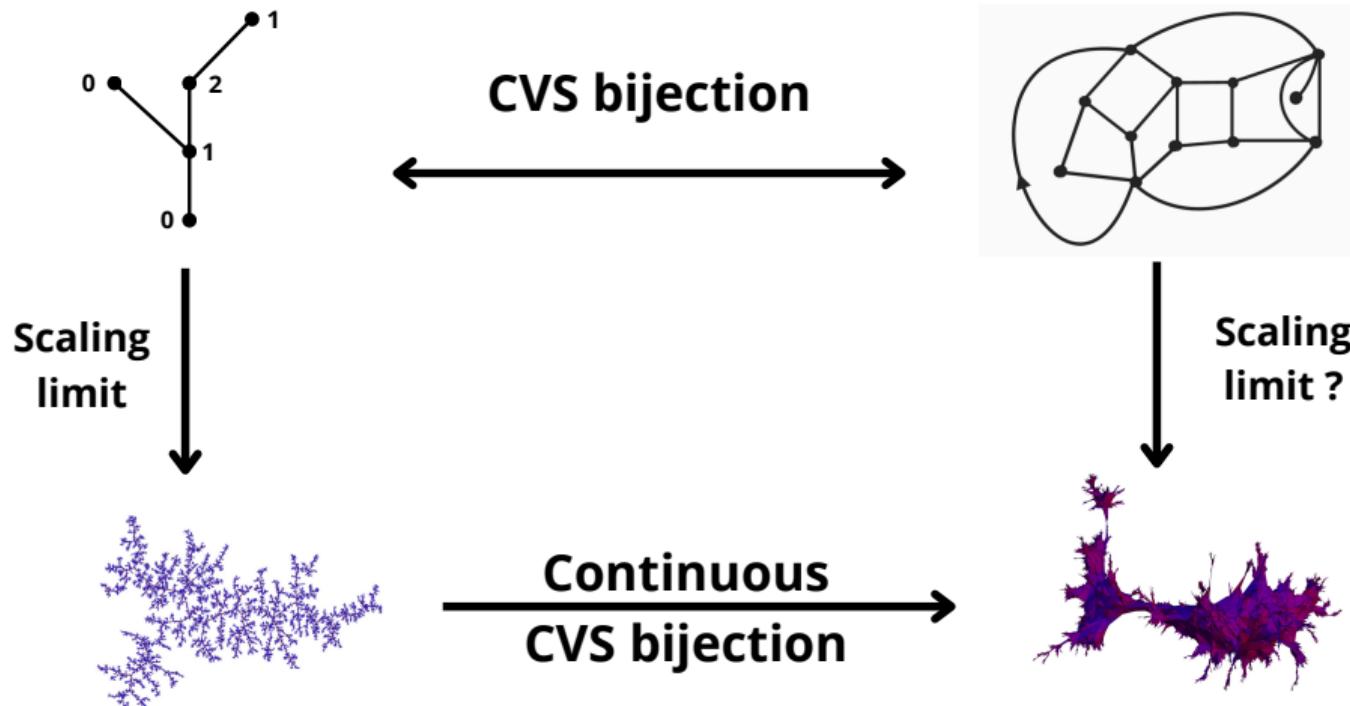
Towards a scaling limit



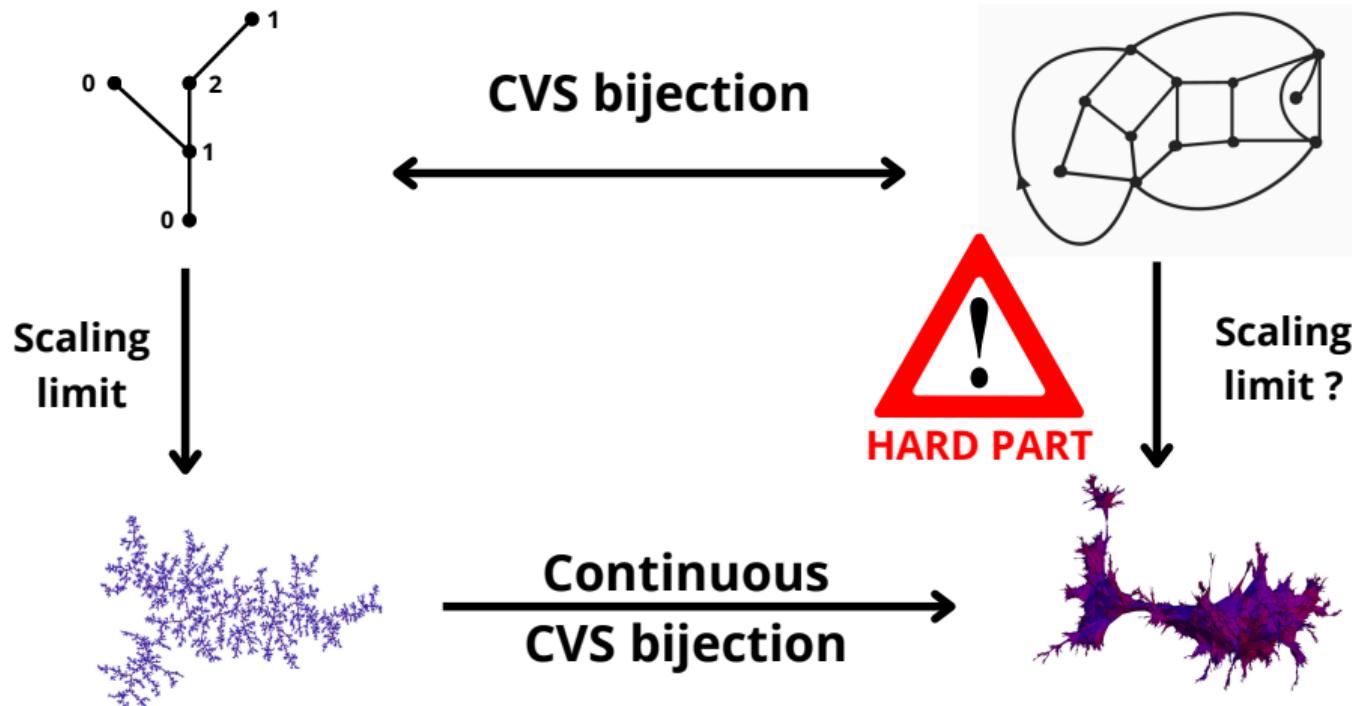
Towards a scaling limit



Towards a scaling limit



Towards a scaling limit



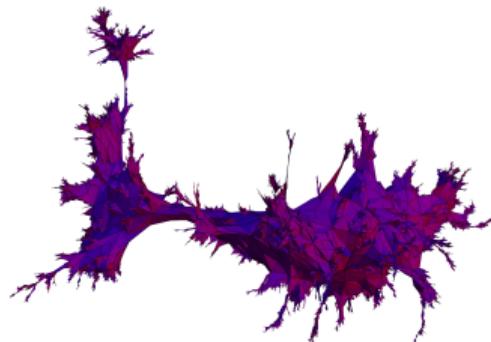
The Brownian sphere

Theorem (Le Gall, Miermont, 2011)

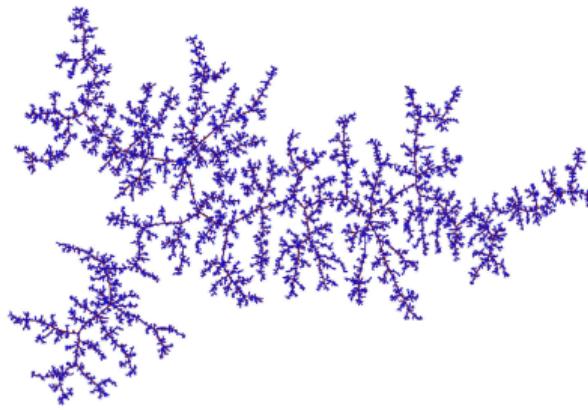
Let Q_n be a uniform random quadrangulation with n faces. There exists a random metric space (\mathcal{S}, D) called the Brownian sphere such that

$$\left(Q_n, \left(\frac{9}{8n} \right)^{1/4} d_{gr} \right) \xrightarrow[n \rightarrow \infty]{(d)} (\mathcal{S}, D)$$

for the Gromov-Hausdorff topology.



How to build the Brownian sphere



The Brownian sphere (S, D) is constructed as a quotient of a CRT (Continuum random tree) \mathcal{T} with “uniform” labels, obtained with a “Continuous CVS bijection”. This tree is obtained under a probability measure $\mathbb{N}_0^{(1)}$. It is also naturally equipped with a volume measure μ .

How to build the Brownian sphere

Let ℓ_* be the minimal label on the tree \mathcal{T} , and x_* the corresponding point in the Brownian sphere. For every $x \in \mathcal{S}$, we have

$$D(x, x_*) = \ell_x - \ell_*$$

Proposition (Le Gall-Paulin, Miermont, 2008)

Almost surely, the Brownian sphere is homeomorphic to the sphere \mathbb{S}^2 and has Hausdorff dimension 4.

Many other properties (Le Gall, Miermont, Curien, Bettinelli, Riera, Gwynne, Miller, Metz-Donnadiu ...)

Some problems

Very useful to :

- Do 1-point estimates
- Study geodesics toward a point

Not very useful to :

- Study distances toward several points simultaneously

Some problems

Very useful to :

- Do 1-point estimates
- Study geodesics toward a point

Not very useful to :

- Study distances toward several points simultaneously

Question

Can we obtain a new construction of the Brownian sphere ?

Already obtained for other Brownian surfaces (Bettinelli-Miermont, Le Gall, Caraceni-Curien, Le Gall-Riera ...)

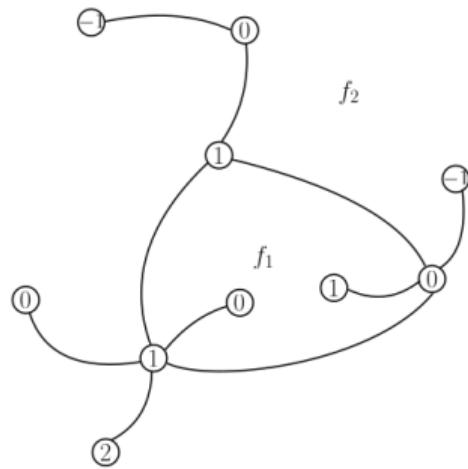
Here we go again

Labelled unicycles and planar maps

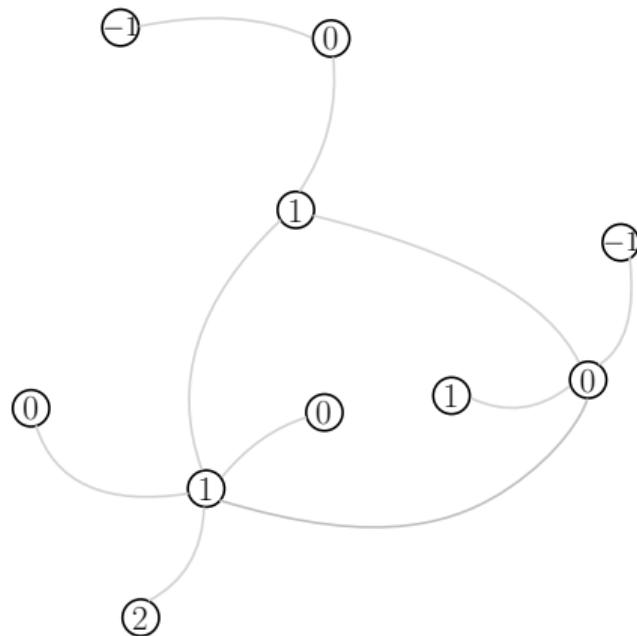
The unicycles appear

Definition

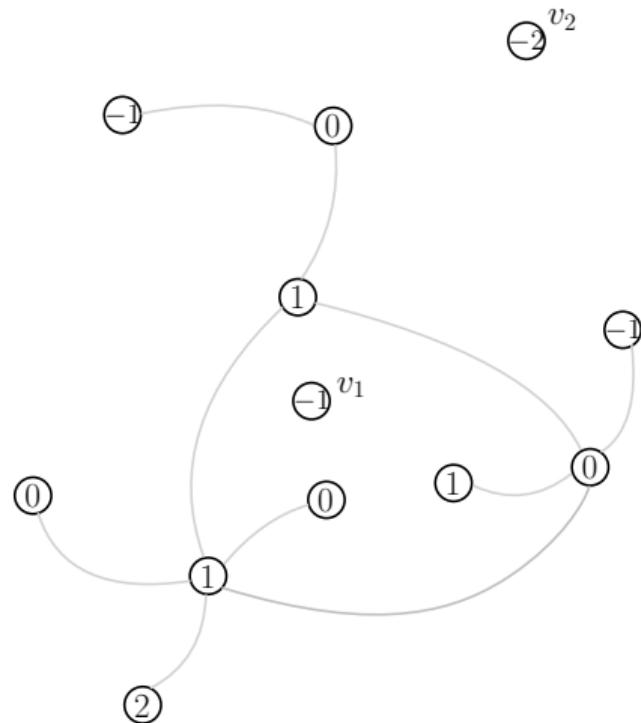
A **unicycle** is a planar map with two faces (labelled f_1 and f_2). A **well-labelled unicycle** is a unicycle equipped with a labelling function.



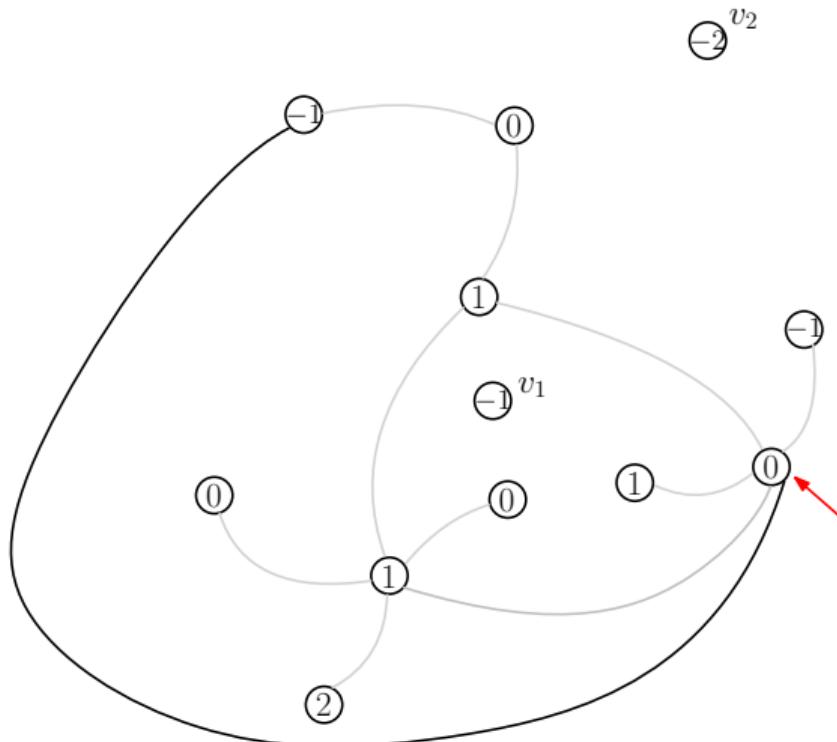
Miermont bijection



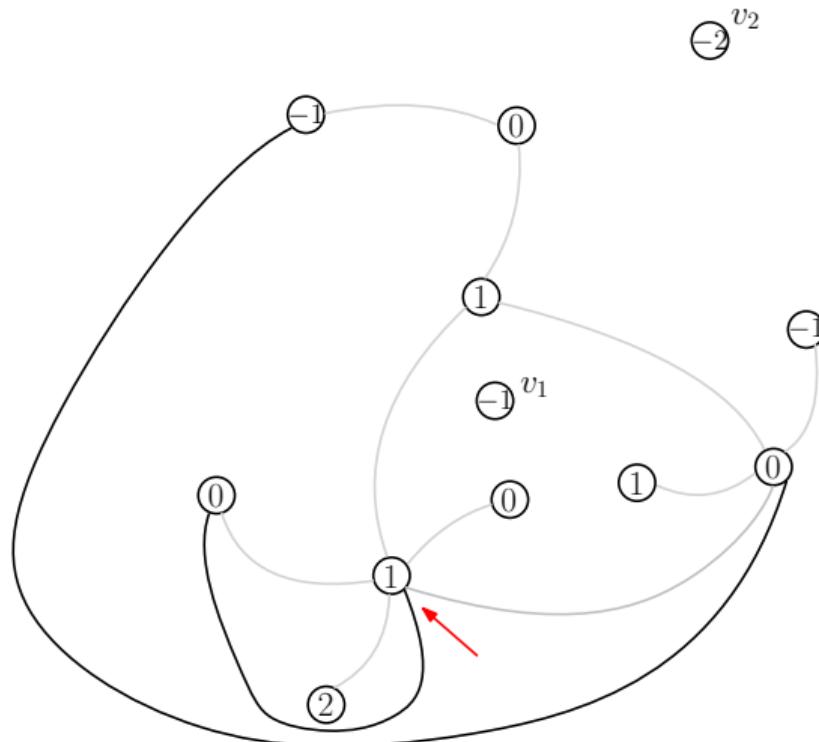
Miermont bijection



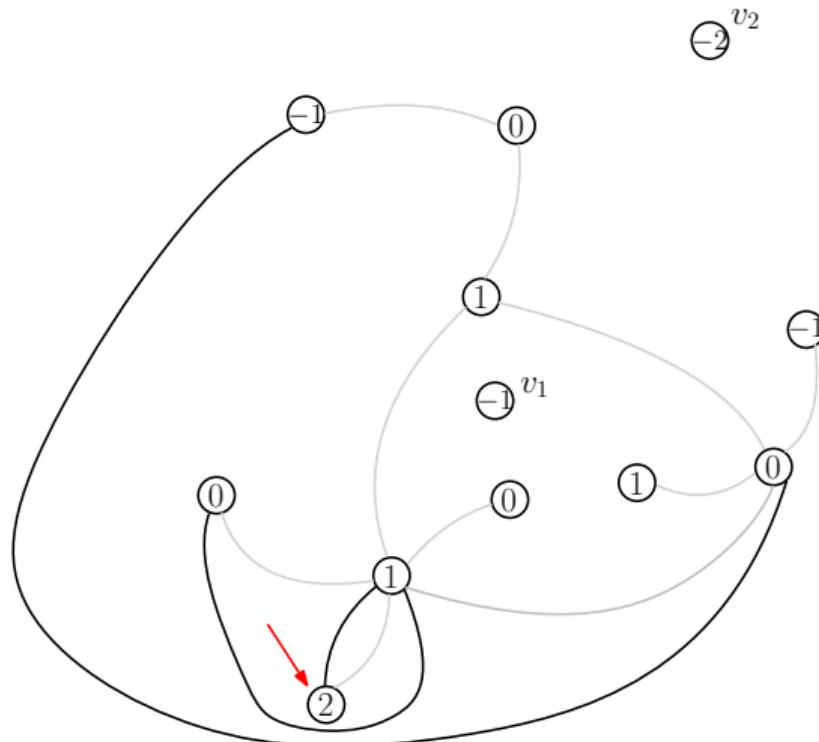
Miermont bijection



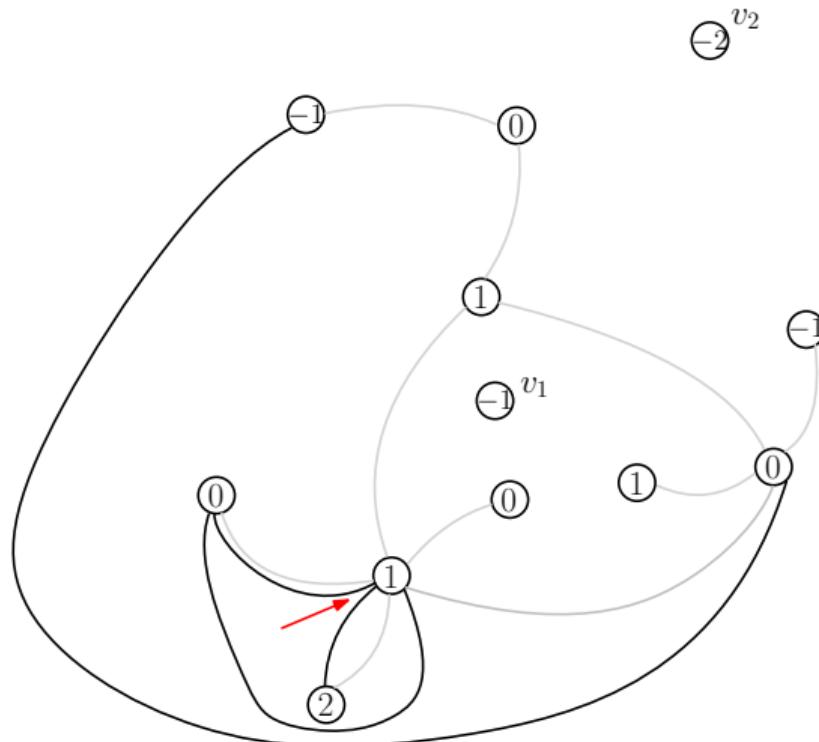
Miermont bijection



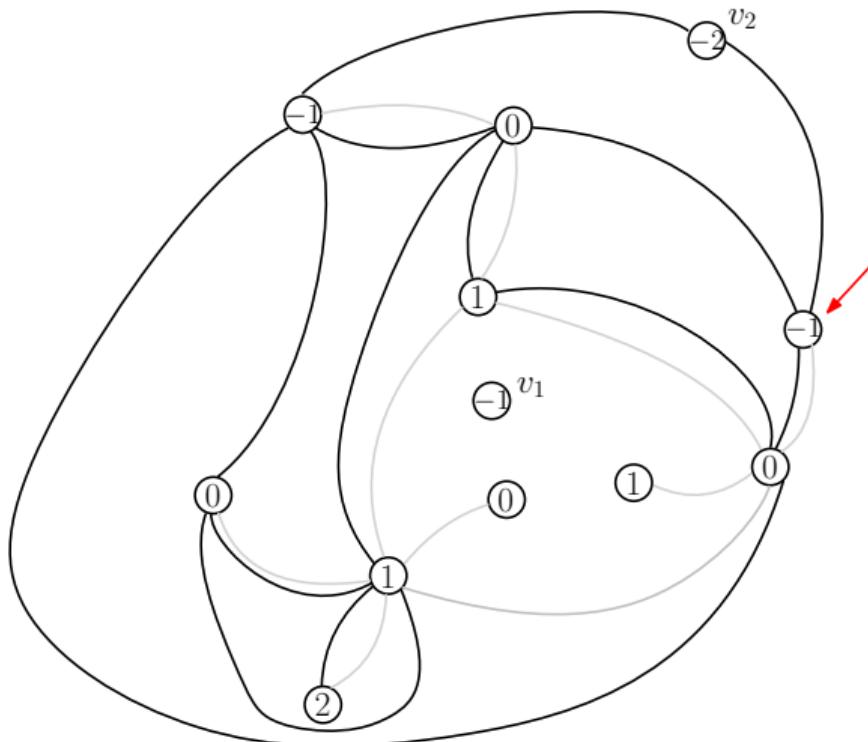
Miermont bijection



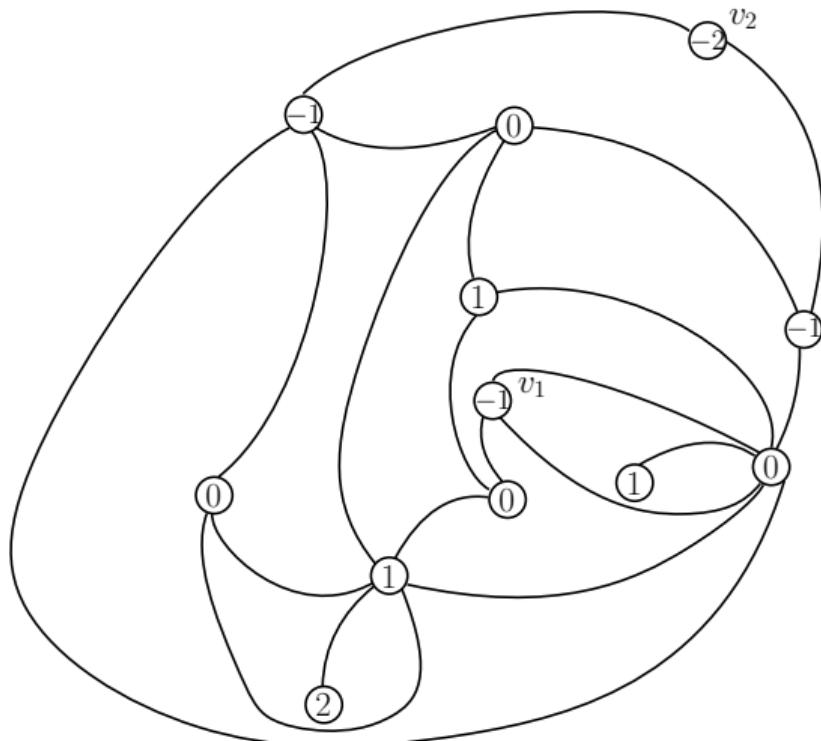
Miermont bijection



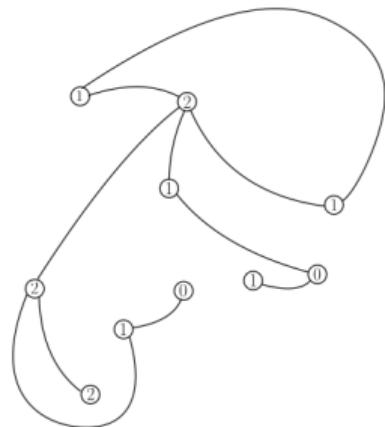
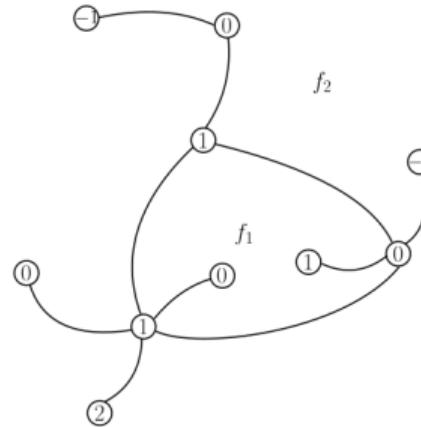
Miermont bijection



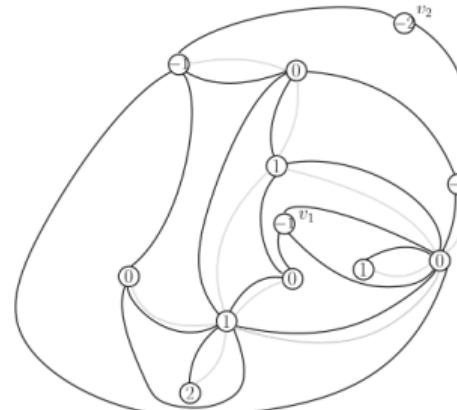
Miermont bijection



**Not a bijection
with quadrangulations**



**Not a bijection
with quadrangulations**



Keep track of the delay

Then for every $u \in \mathbf{q}$, we have

$$\ell_u = \min(d_{\mathbf{q}}(u, v_1) + \ell_{v_1}, d_{\mathbf{q}}(u, v_2) + \ell_{v_2}).$$

Therefore, we are interested in $\delta = \ell_{v_2} - \ell_{v_1}$.

Definition

A **delayed quadrangulation** is a tuple $(\mathbf{q}, v_0, v_1, \delta)$, where :

- \mathbf{q} is a rooted quadrangulations,
- v_1 and v_2 are two distinct vertices of \mathbf{q} ,
- δ is an integer with the same parity as $d_{\mathbf{q}}(v_1, v_2)$ such that $|\delta| < d_{\mathbf{q}}(v_1, v_2)$.

It's a bijection !

Theorem (Miermont, 2007)

The previous procedure is a bijection between the set of well-labelled unicycle with n edges and the set of delayed quadrangulations with n faces.

Remark : this is a particular case of a more general result.

Properties of the Miermont bijection

Proposition

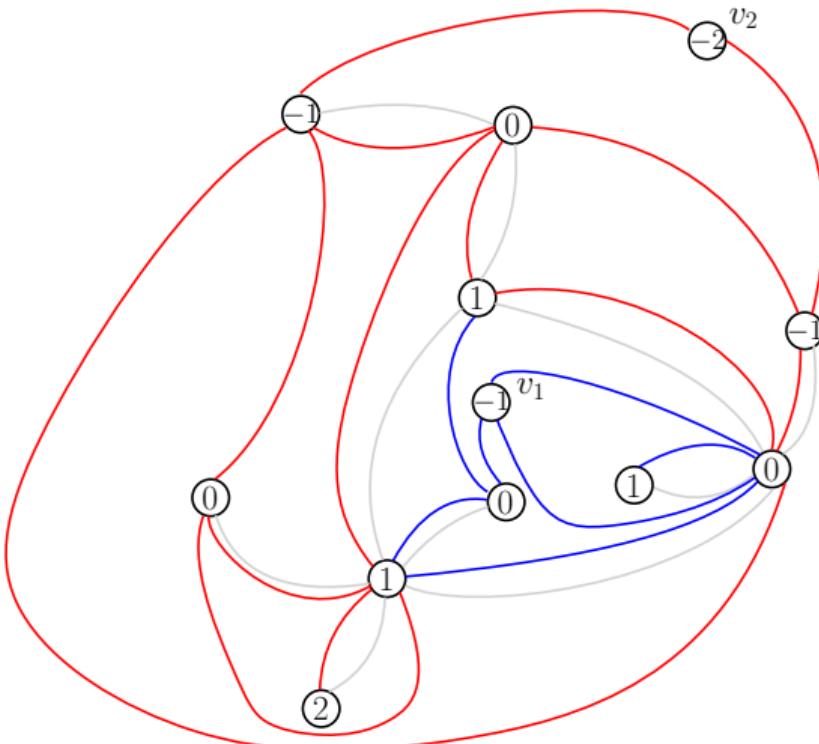
For every $u \in f_1$, we have

$$d_{\mathbf{q}}(u, v_1) = \ell_u - \ell_{v_1}$$

whereas for every $u \in f_2$, we have

$$d_{\mathbf{q}}(u, v_2) = \ell_u - \ell_{v_2}.$$

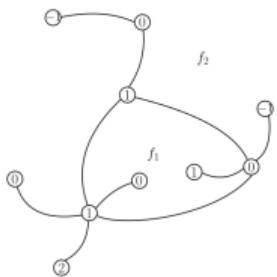
Properties of the Miermont bijection



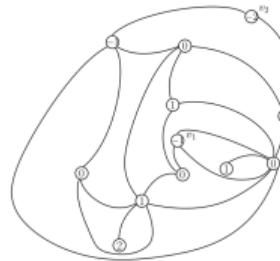
Last but not least

Toward a
new construction

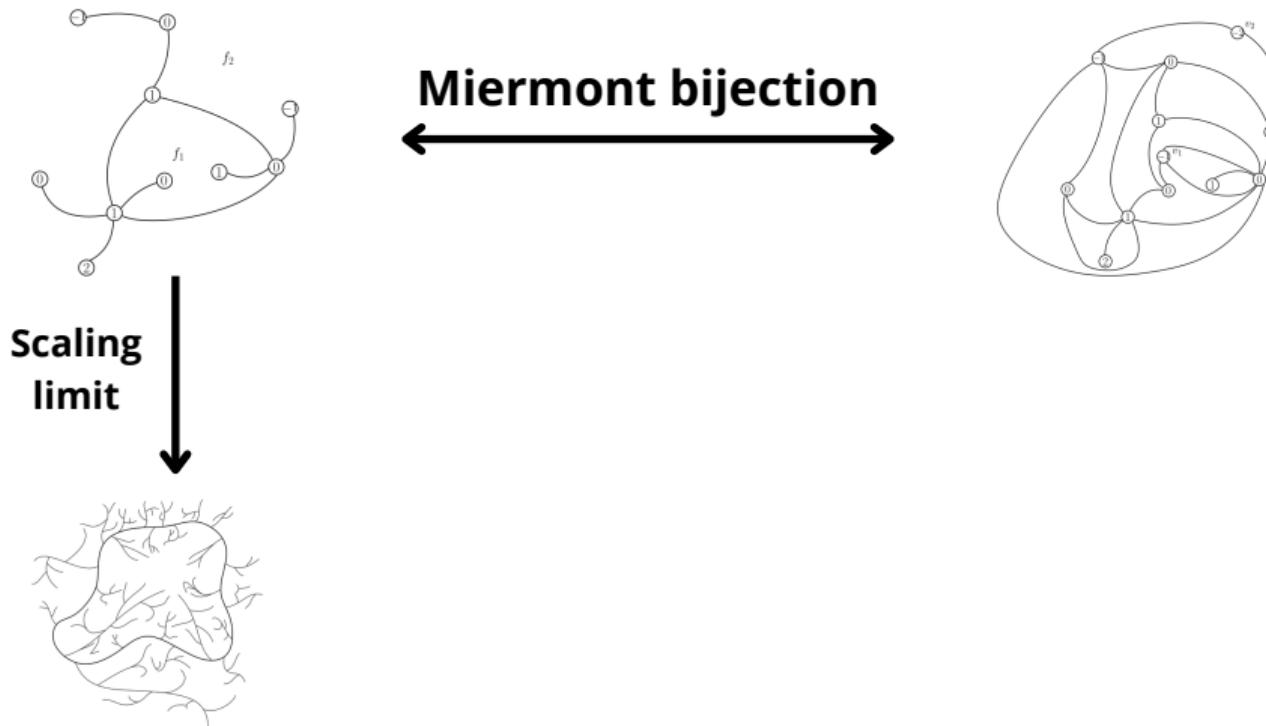
Towards a scaling limit ... again



Miermont bijection

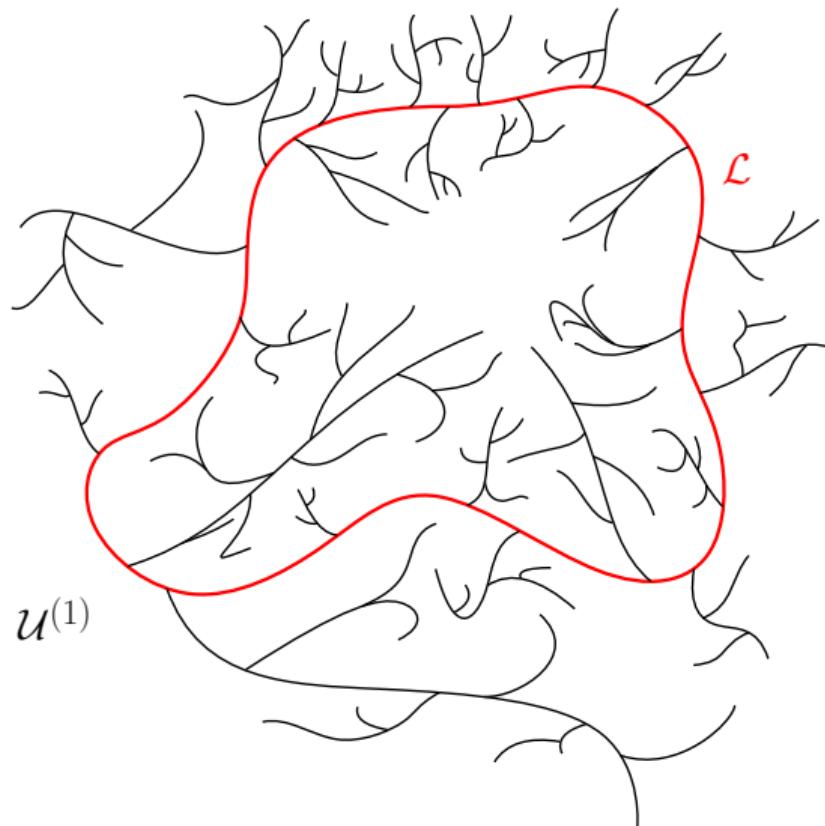


Towards a scaling limit ... again

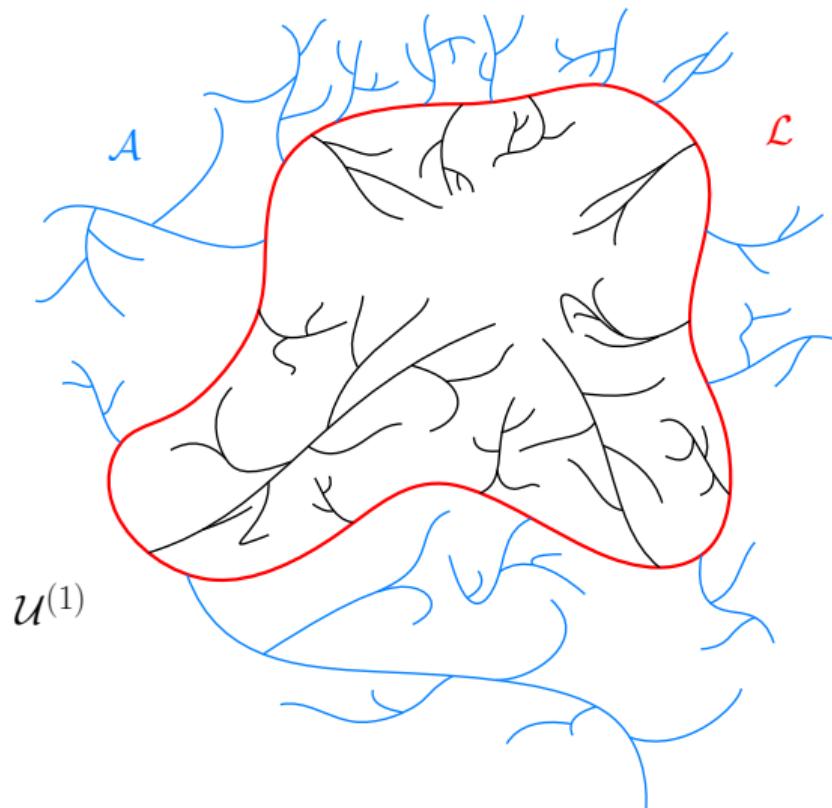


The continuous labelled unicycle

The continuous labelled unicycle



The continuous labelled unicycle



An explicit density

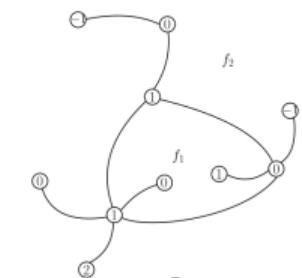
Proposition

The joint law of $(\mathcal{L}, \mathcal{A})$ has density

$$\mathbf{1}_{\{(x,y) \in \mathbb{R}_+ \times [0,1]\}} \frac{1}{2^{1/4} \Gamma(1/4) \sqrt{\pi}} \frac{x^{1/2}}{(y(1-y))^{3/2}} \exp\left(-\frac{x^2}{2y(1-y)}\right).$$

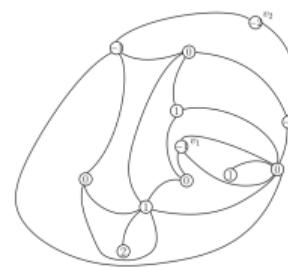
- The labels on the cycle evolve as a Brownian excursion of duration \mathcal{L}
- Every subtree is a labelled CRT with a random volume

Towards a scaling limit ... again



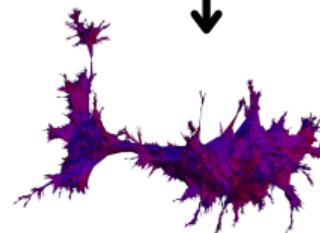
Miermont bijection

Scaling
limit

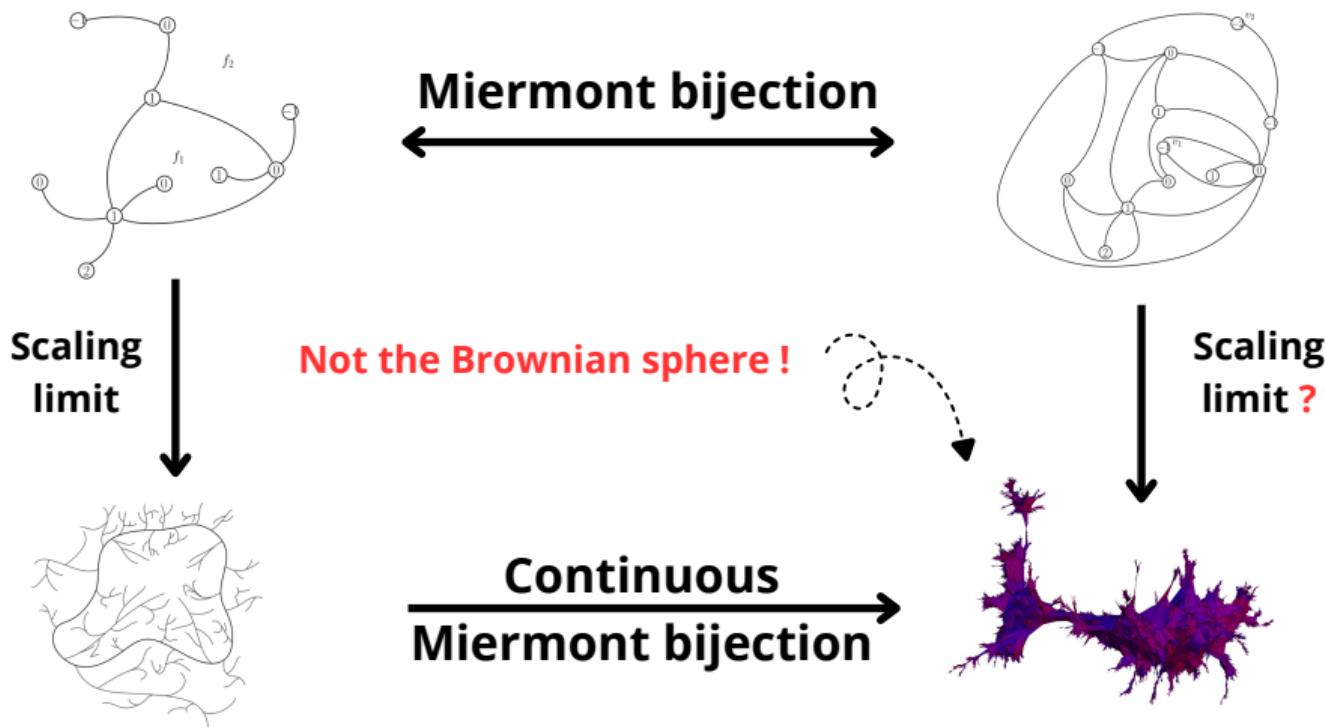


Scaling
limit ?

**Continuous
Miermont bijection**



Towards a scaling limit ... again



The biased Brownian sphere

Let $(\mathcal{S}, D, x_*, \bar{x}_*, \mu)$ be a standard Brownian sphere (\mathcal{S}, D, μ) with two distinguished points sampled according to the measure μ .

Definition

The biased Brownian sphere $(\mathcal{S}_b, D, x_*, \bar{x}_*, \mu, \Delta)$ is defined by the following formula, valid for every non-negative measurable function f :

$$\mathbb{E}[f(\mathcal{S}_b, D, x_*, \bar{x}_*, \mu, \Delta)] = \frac{1}{2\mathbb{E}[D(x_*, \bar{x}_*)]} \mathbb{E} \left[\int_{-D(x_*, \bar{x}_*)}^{D(x_*, \bar{x}_*)} f(\mathcal{S}, D, x_*, \bar{x}_*, \mu, t) dt \right].$$

- The marginal $(\mathcal{S}_b, x_*, \bar{x}_*)$ has the law of the standard Brownian sphere biased by the distance between x_* and \bar{x}_*
- Conditionally on $(\mathcal{S}_b, x_*, \bar{x}_*)$, the random variable Δ is uniform on $[-D(x_*, \bar{x}_*), D(x_*, \bar{x}_*)]$

Constructing the biased Brownian sphere

Let $(Q_n^{(b)}, d_{gr}, x_n^{(b)}, y_n^{(b)}, \Delta_n)$ be uniform random delayed quadrangulation with n faces.

Theorem (M, 2025)

We have the convergence

$$\left(Q_n^{(b)}, \left(\frac{9}{8n} \right)^{1/4} d_{gr}, x_n^{(b)}, y_n^{(b)}, \left(\frac{9}{8n} \right)^{1/4} \Delta_n \right) \xrightarrow[n \rightarrow \infty]{(d)} (\mathcal{S}_b, D, x_*, \bar{x}_*, \Delta).$$

Moreover, the biased Brownian sphere has an explicit construction as a quotient of the labelled unicycle $\mathcal{U}^{(1)}$.

More precisely, we can define a pseudo-distance D on $\mathcal{U}^{(1)}$ such that

$$\mathcal{S}_b = \mathcal{U}^{(1)} / \{D = 0\}.$$

Where is the delay ?



Properties of the distance

Proposition

For every $x \in f_1$, we have

$$D(x, x_*) = \ell_x - \ell_*,$$

whereas for every $x \in f_2$, we have

$$D(x, \bar{x}_*) = \ell_x - \bar{\ell}_*.$$

In particular,

$$D(x_*, \bar{x}_*) = -(\ell_* + \bar{\ell}_*).$$

Moreover, for every x, y , we have

$$D(x, y) \geq |\ell_x - \ell_y|.$$

Sketch of the proof

Step 1 : Use the convergence of uniform quadrangulations towards the Brownian sphere.

For every $n \in \mathbb{N}$

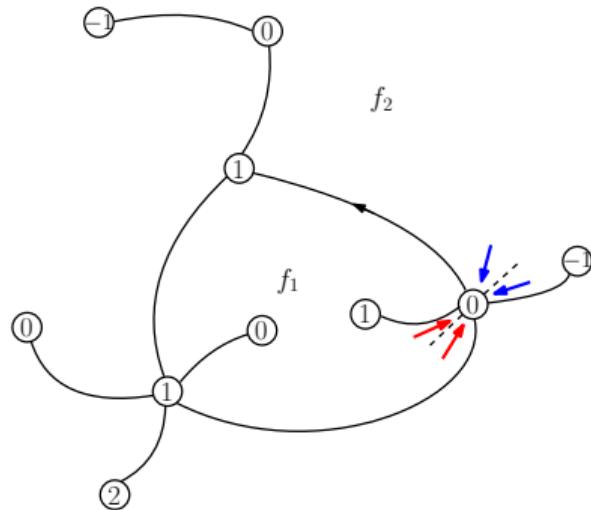
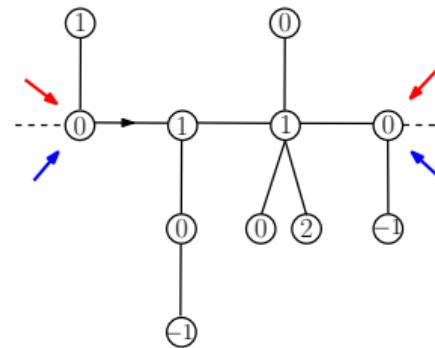
$$\mathbb{E} \left[F(Q_n^{(b)}, x_n^{(b)}, y_n^{(b)}, \Delta_n) \right] = \frac{\mathbb{E} \left[\sum_{\delta_n \in A(Q_n, x_n, y_n)} F(Q_n, d_{gr}, x_n, y_n, \delta_n) \right]}{\mathbb{E} \left[(d_{Q_n}(x_n, y_n) - 1)_+ \right]},$$

where (Q_n, x_n, y_n) is uniformly distributed on the set of bi-pointed quadrangulations with n faces and $A(Q, x, y)$ is the set of admissible delays of (Q, x, y) .

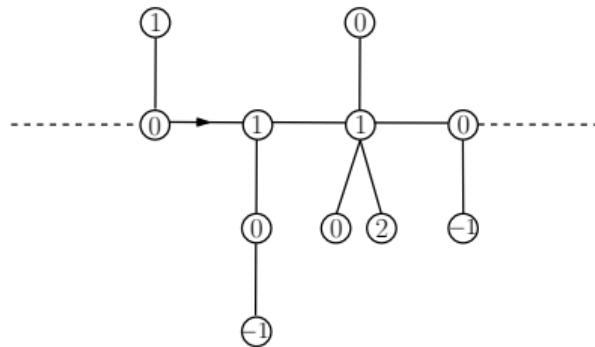
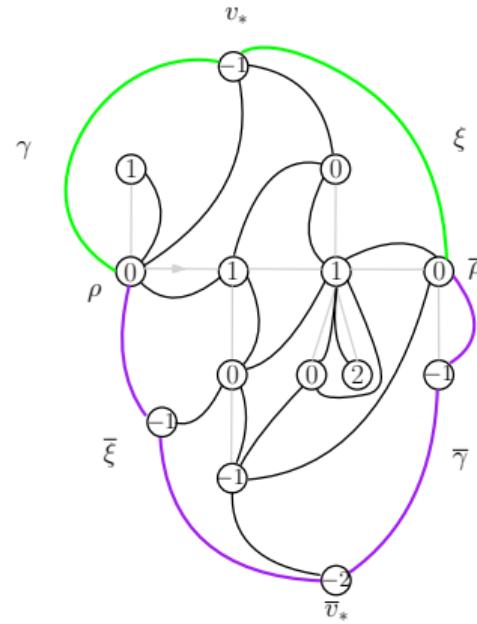
→ We just need to control the Radon-Nikodym derivative !

Sketch of the proof

Step 2 : Look for a link with another model for which the scaling limit is known.



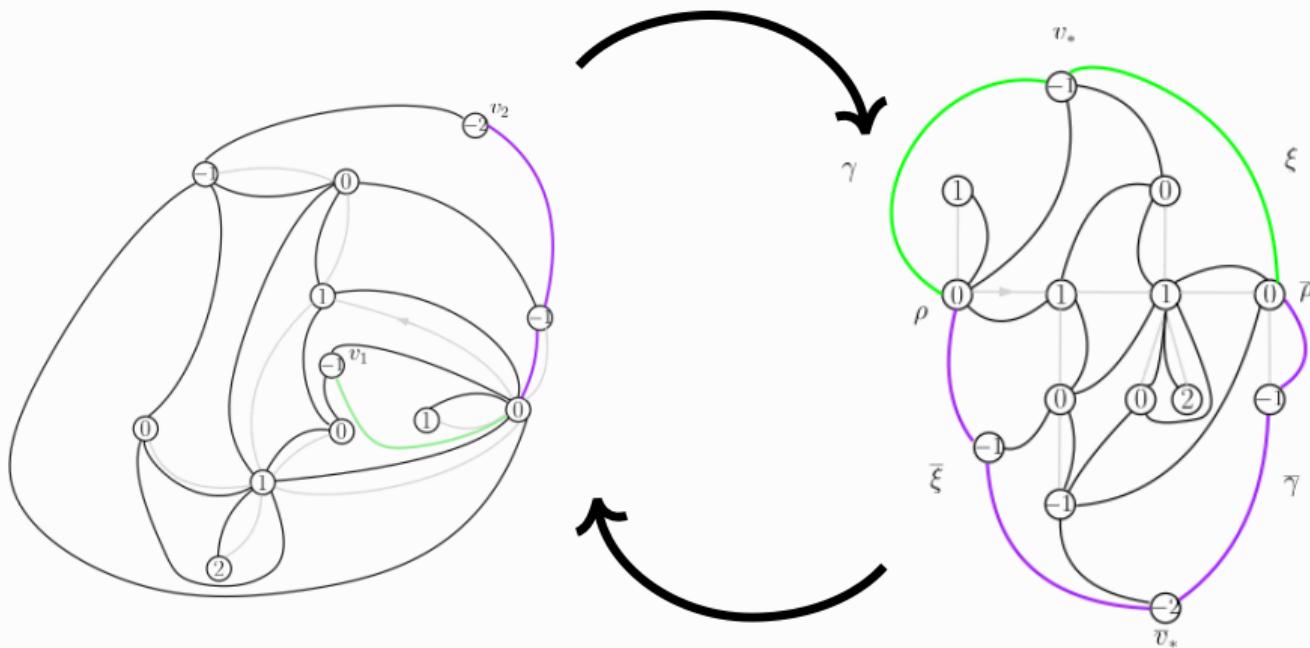
Sketch of the proof



→ The scaling limit of quadrangle with geodesic sides Q is known !
(Bettinelli-Miermont)

How to relate delayed quadrangulations and quadrangles

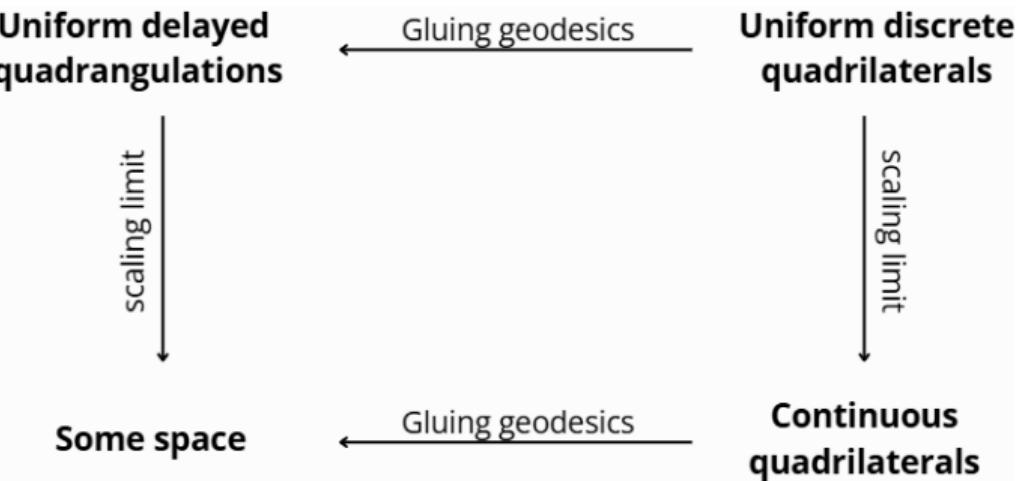
Cut alongside both geodesics



Glue the geodesics by pair

Another diagram

Step 3 : use this link to obtain a scaling limit, he showed that it can be constructed as a quotient of $\mathcal{U}^{(1)}$.



The diagram commutes because the gluing of geodesics is a continuous operation !
(Bettinelli-Miermont)

Delayed Voronoï cells

For any metric space (X, d) with two distinguished points x and y , and any parameter $\delta \in (-d(x, y), d(x, y))$, we define

$$\Theta_\delta := \{z \in X : d(x, z) \leq d(y, z) + \delta\},$$

$$\overline{\Theta}_\delta := \{z \in X : d(x, z) \geq d(y, z) + \delta\}.$$

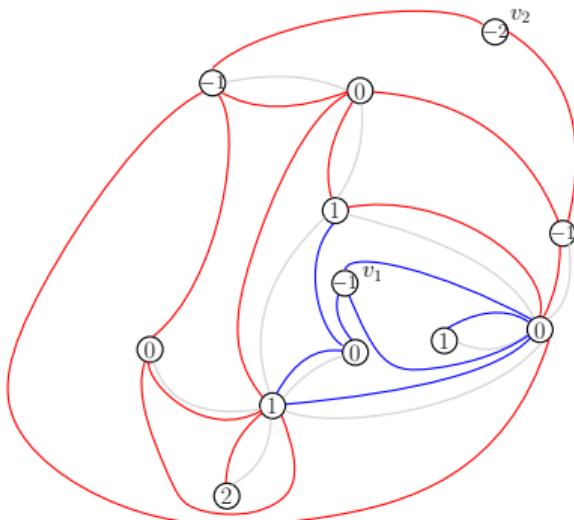
Definition

The sets Θ_δ and $\overline{\Theta}_\delta$ are called the δ -delayed Voronoï cells of X with respect to x and y .

Delayed Voronoï cells in the Brownian sphere

Proposition

The faces of $\mathcal{U}^{(1)}$ exactly correspond to the Δ -Voronoï cells of \mathcal{S}_b , and the cycle C corresponds to the boundary of these cells.



Delayed Voronoï cells in the Brownian sphere

Proposition

The faces of $\mathcal{U}^{(1)}$ exactly correspond to the Δ -Voronoï cells of \mathcal{S}_b , and the cycle C correspond to the boundary of these cells.

Corollary

Let $\mu(\Theta_\Delta)$ and $\mathcal{P}(\Theta_\Delta)$ stand for the volume and the perimeter of Θ_Δ . Then, the law of $(\mathcal{P}(\Theta_\Delta), \mu(\Theta_\Delta))$ has density

$$\mathbf{1}_{\{(x,y) \in \mathbb{R}_+ \times [0,1]\}} \frac{1}{2^{1/4} \Gamma(1/4) \sqrt{\pi}} \frac{x^{1/2}}{(y(1-y))^{3/2}} \exp\left(-\frac{x^2}{2y(1-y)}\right).$$

In particular, $\mu(\Theta_\Delta)$ is a Beta($1/4, 1/4$) random variable.

Getting rid of the bias

Recall that

$$D(x_*, \bar{x}_*) = -(\ell_* + \bar{\ell}_*) \quad \text{and} \quad \Delta = \bar{\ell}_* - \ell_*.$$

Therefore,

Conditioning on Δ and $D(x_*, \bar{x}_*) \longleftrightarrow$ Conditioning on ℓ_* and $\bar{\ell}_*$

Getting rid of the bias

Recall that

$$D(x_*, \bar{x}_*) = -(\ell_* + \bar{\ell}_*) \quad \text{and} \quad \Delta = \bar{\ell}_* - \ell_*.$$

Therefore,

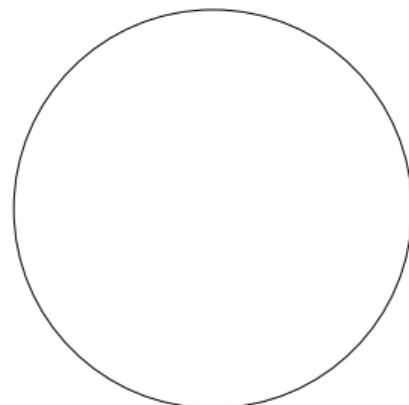
Conditioning on Δ and $D(x_*, \bar{x}_*) \longleftrightarrow$ Conditioning on ℓ_* and $\bar{\ell}_*$

Problem : I cannot even compute $\mathbb{P}(\ell_* < -a, \bar{\ell}_* < -b) \dots$

Unicycle with free volume

- Sample the length of the cycle with the infinite measure $ct^{-3/2}dt$
- The labels on the cycle evolve as a Brownian excursion \mathbf{e} with the appropriate duration

u

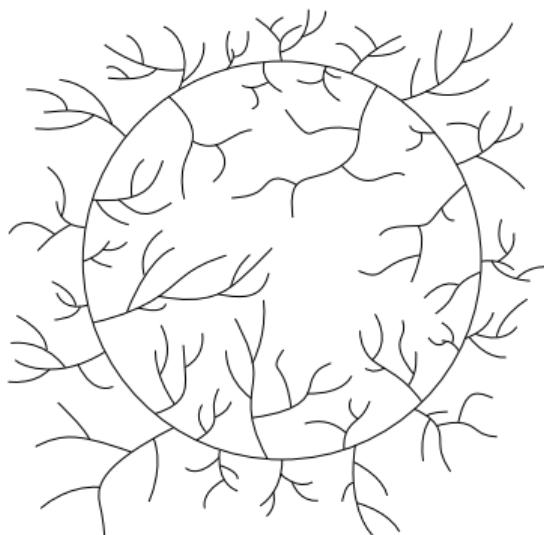


Unicycle with free volume

- Conditionnaly on \mathbf{e} , the forests on each side are distributed as independent Poisson point measures with intensity

$$2\mathbf{1}_{[0,\sigma]}(t)dt\mathbb{N}_{\mathbf{e}_t}(dW).$$

u



Properties of the free biased Brownian sphere

Let \mathbb{U} be the (infinite) measure used to construct \mathcal{U} .

Proposition

For every $a > 0$, we have

$$\mathbb{U}(\mu(\mathcal{U}) > a) = \frac{\Gamma(1/4)}{(2a)^{1/4}\pi}.$$

Moreover, the unicycle \mathcal{U} **conditioned to have** $\mu(\mathcal{U}) = 1$ has the law of $\mathcal{U}^{(1)}$.

Properties of the free biased Brownian sphere

Let \mathbb{U} be the (infinite) measure used to construct \mathcal{U} .

Proposition

For every $a > 0$, we have

$$\mathbb{U}(\mu(\mathcal{U}) > a) = \frac{\Gamma(1/4)}{(2a)^{1/4}\pi}.$$

Moreover, the unicycle \mathcal{U} **conditioned to have** $\mu(\mathcal{U}) = 1$ has the law of $\mathcal{U}^{(1)}$.

Proposition

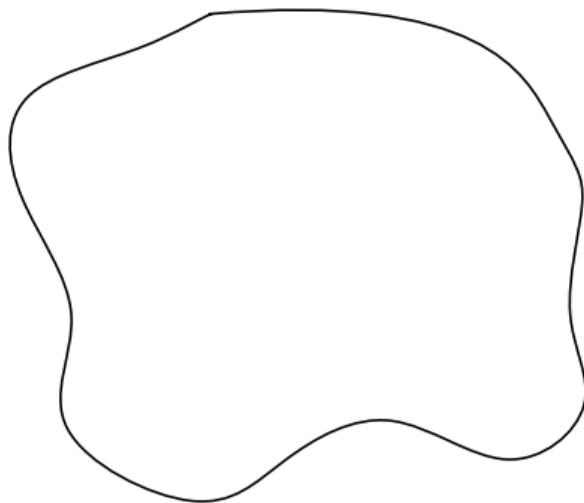
For every $a, b > 0$, we have

$$\mathbb{U}(\ell_* < -a, \bar{\ell}_* < -b) = \frac{1}{a+b}.$$

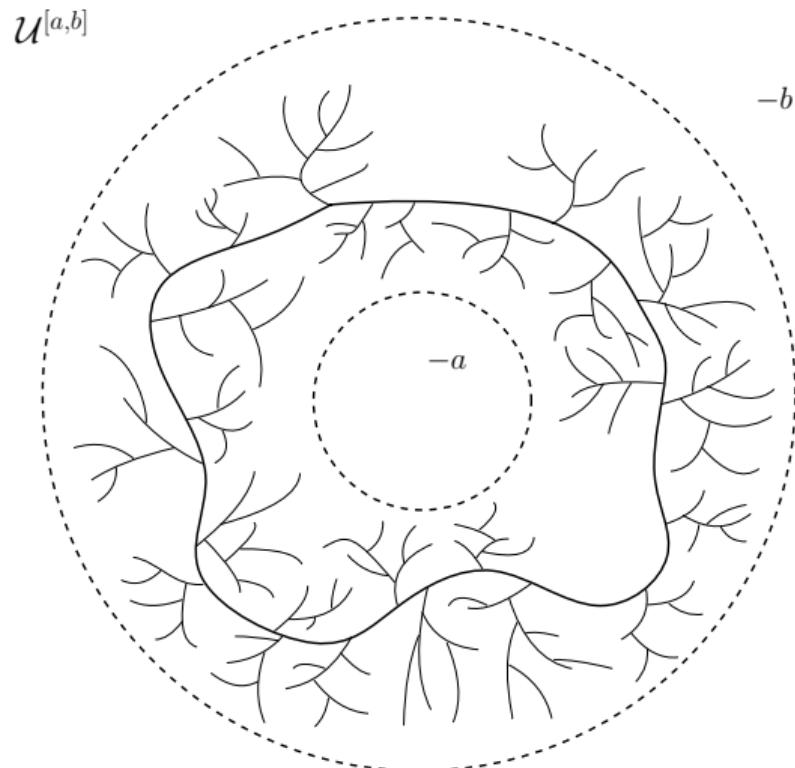
Fixing ℓ_* and $\bar{\ell}_*$

$$\mathcal{U}^{[a,b]}$$

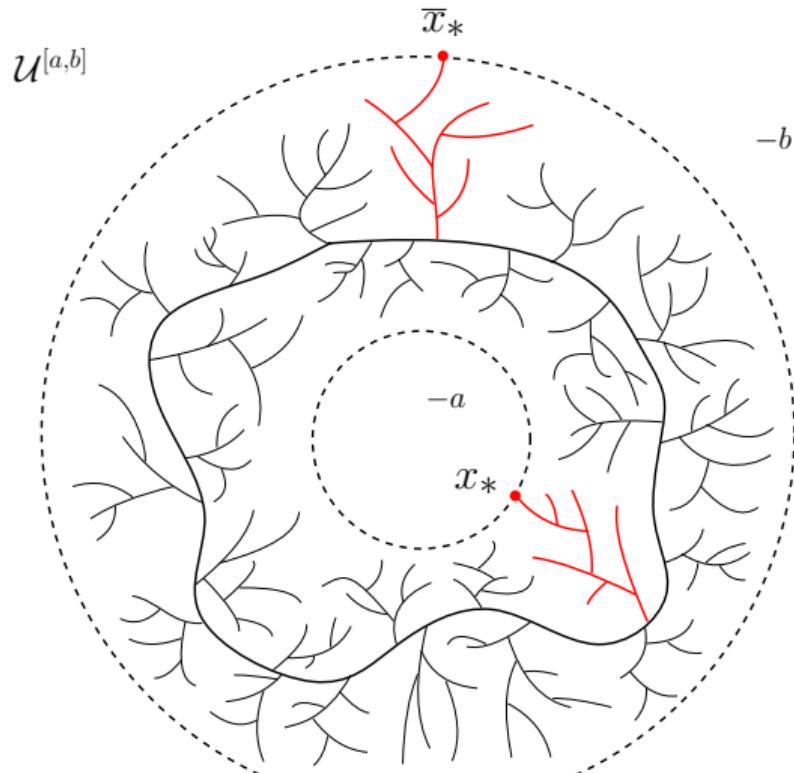
$$\tilde{\mathbf{e}}^{(a,b)}$$



Fixing ℓ_* and $\bar{\ell}_*$



Fixing ℓ_* and $\bar{\ell}_*$



Weird but explicit processes

The law of the random variable $\tilde{\mathbf{e}}^{(a,b)}$ is absolutely continuous with respect to Ito's excursion measure $\mathbf{n}(d\mathbf{e})$, with density

$$18(a+b)^3 \left(\int_0^\sigma \int_0^\sigma \frac{dsdt}{(\mathbf{e}_s + a)^3(\mathbf{e}_t + b)^3} \right) \exp \left(-3 \int_0^\sigma \left(\frac{1}{(\mathbf{e}_u + a)^2} + \frac{1}{(\mathbf{e}_u + b)^2} \right) du \right).$$

Weird but explicit processes

The law of the random variable $\tilde{\mathbf{e}}^{(a,b)}$ is absolutely continuous with respect to Ito's excursion measure $\mathbf{n}(d\mathbf{e})$, with density

$$18(a+b)^3 \underbrace{\left(\int_0^\sigma \int_0^\sigma \frac{dsdt}{(\mathbf{e}_s + a)^3(\mathbf{e}_t + b)^3} \right)}_{\text{where to graft the two atoms}} \underbrace{\exp \left(-3 \int_0^\sigma \left(\frac{1}{(\mathbf{e}_u + a)^2} + \frac{1}{(\mathbf{e}_u + b)^2} \right) du \right)}_{\text{conditioning the two Poisson point measures}}.$$

A disintegration formula

Proposition

Let F and G be measurable non-negative functions. Then

$$\mathbb{U} \left(F(-\ell_*, -\bar{\ell}_*) G(\mathcal{U}) \right) = \int_{\mathbb{R}_+ \times \mathbb{R}_+} F(a, b) \frac{2}{(a+b)^3} \mathbb{E} \left[G(\mathcal{U}^{(a,b)}) \right] da db.$$

Hence, the unicycle \mathcal{U} **conditioned to have** $\ell_* = -a$ **and** $\bar{\ell}_* = -b$ has the law of $\mathcal{U}^{(a,b)}$.

The new construction, finally

Theorem (M, 2025)

For every $a, b > 0$, the random surface associated to $\mathcal{U}^{(a,b)}$ is distributed as a free Brownian sphere \mathcal{S} with two distinguished points at distance $a + b$. Moreover, the faces of $\mathcal{U}^{(a,b)}$ correspond to the $(a - b)$ -delayed Voronoï cells of \mathcal{S} .

Applications and perspectives

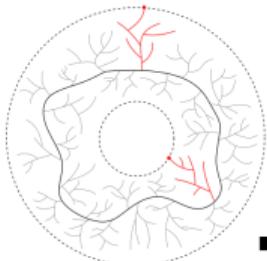
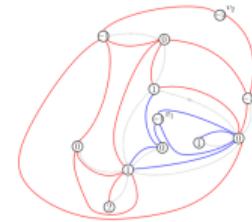
A couple of applications :

- Explicit distributions of several quantities related to Voronoï cells
- Study of the local behaviour around a geodesic

In the future :

- More results about Voronoï cells
- Explicit distributions for the Brownian annulus ?
- Study of exceptional delays ?

The End



**Thank you for
your attention !**

