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Brownian geometry

Goal : Construct and study some "canonical random surfaces"

More precisely, we want to consider random surfaces:
• that arise as the scaling limit of discrete models, i.e. planar maps
• that have some universality property
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Plan of the talk

1. A quick history of the Brownian sphere

2. Labelled unicycles and planar maps

3. Toward a new construction
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A bit of history

A quick history of
the Brownian sphere
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Planar maps

Definition
A planar map is the embedding of a finite graph G = (V ,E ) in the sphere S2 so that :

• The edges do not cross
• Each face is homeomorphic to the unit disk

where faces are the complements of the connected components of the embedding in S2.

We consider planar maps up to homeomorphism of the sphere, and as metric spaces
(equipped with the graph distance).
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Planar maps
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Planar maps

A face of degree 7
An edge

A vertex

A corner
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Quadrangulations

Definition
A quadrangulation is a planar map where each face has degree 4. We denote by Qn the
set of quadrangulations with n faces, and Q•n the set of pointed quadrangulations with n
faces.

General question
What is the typical behavior of a large planar map ?
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Labelled tree
Fix a rooted planar tree t with root vertex u0. An admissible labelling function on t is a
function ℓ : V (t) → Z such that

• ℓ(u0) = 0.
• |ℓ(u) − ℓ(v ) | ≤ 1 if u and v are neighbors.

Let Tn be the set of all pairs (t, ℓ) of labelled tree with n edges.
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The CVS bijection

Theorem (Cori, Vauquelin, 1981 and Schaeffer, 1998)
The pointed graph (q, v∗) obtained by this procedure is a pointed quadrangulation with n
faces. Moreover, it gives a bijection between Tn × {−1, 1} and Q•n.

To study random quadrangulations :
• Choose a random labelled tree with n edges and a uniform labelling (Tn, ℓn)
• Apply the CVS bijection
• Study the properties of the quadrangulation through the bijection
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Some properties of the CVS bijection

Proposition
For every v ∈ q, we have

dq(v , v∗) = ℓ(v ) − ℓ(v∗).

Moreover, for every u, v ∈ q,

dq(u, v ) ≥ |ℓ(u) − ℓ(v ) |.
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Towards a scaling limit
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The Brownian sphere

Theorem (Le Gall, Miermont, 2011)
Let Qn be a uniform random quadrangulation with n faces. There exists a random metric
space (S,D) called the Brownian sphere such that(

Qn,

(
9
8n

)1/4
dgr

)
(d )
−−−−→
n→∞

(S,D)

for the Gromov-Hausdorff topology.
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How to build the Brownian sphere

The Brownian sphere (S,D) is constructed as a quotient of a CRT (Continuum random
tree) T with “uniform” labels, obtained with a “Continuous CVS bijection”. This tree is
obtained under a probability measure N(1)0 . It is also naturally equipped with a volume
measure 𝜇.
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How to build the Brownian sphere

Let ℓ∗ be the minimal label on the tree T , and x∗ the corresponding point in the
Brownian sphere. For every x ∈ S, we have

D (x , x∗) = ℓx − ℓ∗

Proposition (Le Gall-Paulin, Miermont, 2008)
Almost surely, the Brownian sphere is homeomorphic to the sphere S2 and has Hausdorff
dimension 4.

Many other properties (Le Gall, Miermont, Curien, Bettinelli, Riera, Gwynne, Miller,
Metz-Donnadieu ...)
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Some problems

Very useful to :
• Do 1-point estimates
• Study geodesics toward a point

Not very useful to :
• Study distances toward several points simultaneously

Question
Can we obtain a new construction of the Brownian sphere ?

Already obtained for other Brownian surfaces (Bettinelli-Miermont, Le Gall,
Caraceni-Curien, Le Gall-Riera ...)
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Here we go again

Labelled unicycles 
and planar maps 
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The unicycles appear

Definition
A unicycle is a planar map with two faces (labelled f1 and f2). A well-labelled unicycle
is a unicycle equipped with a labelling function.
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Sadness

Not a bijection
with quadrangulations
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Keep track of the delay

Then for every u ∈ q, we have

ℓu = min(dq(u, v1) + ℓv1 , dq(u, v2) + ℓv2).

Therefore, we are interested in 𝛿 = ℓv2 − ℓv1 .

Definition
A delayed quadrangulation is a tuple (q, v0, v1, 𝛿), where :

• q is a rooted quadrangulations,
• v1 and v2 are two distinct vertices of q,
• 𝛿 is an integer with the same parity as dq(v1, v2) such that |𝛿 | < dq(v1, v2).
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It’s a bijection !

Theorem (Miermont, 2007)
The previous procedure is a bijection between the set of well-labelled unicycle with n
edges and the set of delayed quadrangulations with n faces.

Remark : this is a particular case of a more general result.
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Properties of the Miermont bijection

Proposition
For every u ∈ f1, we have

dq(u, v1) = ℓu − ℓv1

whereas for every u ∈ f2, we have

dq(u, v2) = ℓu − ℓv2 .
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Properties of the Miermont bijection
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Last but not least

Toward a 
new construction 
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Towards a scaling limit ... again

Miermont bijection
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Towards a scaling limit ... again

Miermont bijection

Scaling
limit
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The continuous labelled unicycle

U (1)
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The continuous labelled unicycle

L

U (1)
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The continuous labelled unicycle

LA

U (1)
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An explicit density

LA

U (1)

Proposition
The joint law of (L,A) has density

1{ (x ,y ) ∈R+×[0,1] }
1

21/4Γ(1/4)
√
𝜋

x1/2

(y (1 − y ))3/2
exp

(
− x2

2y (1 − y )

)
.

• The labels on the cycle evolve as a Brownian excursion of duration L
• Every subtree is a labelled CRT with a random volume
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Towards a scaling limit ... again
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Not the Brownian sphere !
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The biased Brownian sphere

Let (S,D, x∗, x ∗, 𝜇) be a standard Brownian sphere (S,D, 𝜇) with two distinguished
points sampled according to the measure 𝜇.

Definition
The biased Brownian sphere (Sb ,D, x∗, x ∗, 𝜇,Δ) is defined by the following formula, valid
for every non-negative measurable function f :

E[f (Sb ,D, x∗, x ∗, 𝜇,Δ)] =
1

2E[D (x∗, x ∗)]
E

[∫ D (x∗,x∗ )

−D (x∗,x∗ )
f (S,D, x∗, x ∗, 𝜇, t)dt

]
.

• The marginal (Sb , x∗, x ∗) has the law of the standard Brownian sphere biased by the
distance between x∗ and x ∗

• Conditionally on (Sb , x∗, x ∗), the random variable Δ is uniform on
[−D (x∗, x ∗),D (x∗, x ∗)]
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Constructing the biased Brownian sphere

Let (Q (b)n , dgr , x (b)n , y (b)n ,Δn) be uniform random delayed quadrangulation with n faces.

Theorem (M, 2025)
We have the convergence(

Q (b)n ,

(
9
8n

)1/4
dgr , x (b)n , y (b)n ,

(
9
8n

)1/4
Δn

)
(d )
−−−−→
n→∞

(Sb ,D, x∗, x ∗,Δ) .

Moreover, the biased Brownian sphere has an explicit construction as a quotient of the
labelled unicycle U (1) .

More precisely, we can define a pseudo-distance D on U (1) such that

Sb = U (1)/{D = 0}.

60 / 83



Where is the delay ?

U (1)

x∗

x∗

∆ = ℓx∗ − ℓx∗
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Properties of the distance

Proposition
For every x ∈ f1, we have

D (x , x∗) = ℓx − ℓ∗,

whereas for every x ∈ f2, we have

D (x , x ∗) = ℓx − ℓ∗.

In particular,
D (x∗, x ∗) = −(ℓ∗ + ℓ∗).

Moreover, for every x , y, we have

D (x , y ) ≥ |ℓx − ℓy |.
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Sketch of the proof

Step 1 : Use the convergence of uniform quadrangulations towards the Brownian sphere.

For every n ∈ N

E
[
F (Q (b)n , x (b)n , y (b)n ,Δn)

]
=

E
[∑

𝛿n∈A(Qn ,xn ,yn ) F (Qn, dgr , xn, yn, 𝛿n)
]

E
[ (

dQn (xn, yn) − 1
)
+
] ,

where (Qn, xn, yn) is uniformly distributed on the set of bi-pointed quadrangulations with
n faces and A(Q, x , y ) is the set of admissible delays of (Q, x , y ).

−→ We just need to control the Radon-Nikodym derivative !
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Sketch of the proof

Step 2 : Look for a link with another model for which the scaling limit is known.
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Sketch of the proof

0 01 1
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−1

v∗
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γ
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ξ

ρ
ρ

−→ The scaling limit of quadrangle with geodesic sides Q is known !
(Bettinelli-Miermont)
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How to relate delayed quadrangulations and quadrangles

Cut alongside both geodesics

Glue the geodesics by pair
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Another diagram

Step 3 : use this link to obtain a scaling limit, he showed that it can be constructed as a
quotient of U (1) .

The diagram commutes because the gluing of geodesics is a continuous operation !
(Bettinelli-Miermont)
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Delayed Voronoï cells

For any metric space (X , d) with two distinguished points x and y , and any parameter
𝛿 ∈ (−d (x , y ), d (x , y )), we define

Θ𝛿 := {z ∈ X : d (x , z) ≤ d (y , z) + 𝛿},
Θ𝛿 := {z ∈ X : d (x , z) ≥ d (y , z) + 𝛿}.

Definition
The sets Θ𝛿 and Θ𝛿 are called the 𝛿-delayed Voronoï cells of X with respect to x and y .
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Delayed Voronoï cells in the Brownian sphere

Proposition
The faces of U (1) exactly correspond to the Δ-Voronoï cells of Sb, and the cycle C
correspond to the boundary of these cells.
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Delayed Voronoï cells in the Brownian sphere

Proposition
The faces of U (1) exactly correspond to the Δ-Voronoï cells of Sb, and the cycle C
correspond to the boundary of these cells.

Corollary
Let 𝜇(ΘΔ) and P(ΘΔ) stand for the volume and the perimeter of ΘΔ. Then, the law of
(P(ΘΔ), 𝜇(ΘΔ)) has density

1{ (x ,y ) ∈R+×[0,1] }
1

21/4Γ(1/4)
√
𝜋

x1/2

(y (1 − y ))3/2
exp

(
− x2

2y (1 − y )

)
.

In particular, 𝜇(ΘΔ) is a Beta(1/4, 1/4) random variable.
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Getting rid of the bias

Recall that
D (x∗, x ∗) = −(ℓ∗ + ℓ∗) and Δ = ℓ∗ − ℓ∗.

Therefore,

Conditioning on Δ and D (x∗, x ∗) ←→ Conditioning on ℓ∗ and ℓ∗

Problem : I cannot even compute P(ℓ∗ < −a, ℓ∗ < −b) ...
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Unicycle with free volume

• Sample the length of the cycle with the infinite measure ct−3/2dt
• The labels on the cycle evolve as a Brownian excursion e with the appropriate

duration
U
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Unicycle with free volume
• Conditionnaly on e, the forests on each side are distributed as independent Poisson

point measures with intensity

21[0,𝜎 ] (t)dtNet (dW ).
U
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Properties of the free biased Brownian sphere

Let U be the (infinite) measure used to construct U.

Proposition
For every a > 0, we have

U(𝜇(U) > a) = Γ(1/4)
(2a)1/4𝜋

.

Moreover, the unicycle U conditioned to have 𝜇(U) = 1 has the law of U (1) .

Proposition
For every a, b > 0, we have

U(ℓ∗ < −a, ℓ∗ < −b) = 1
a + b .
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Fixing ℓ∗ and ℓ∗

U [a,b]

ẽ(a,b)
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Fixing ℓ∗ and ℓ∗
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Fixing ℓ∗ and ℓ∗
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−a

U [a,b]

x∗

x∗
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Weird but explicit processes

The law of the random variable ẽ(a,b) is absolutely continuous with respect to Ito’s
excursion measure n(de), with density

18(a + b)3
(∫ 𝜎

0

∫ 𝜎

0

dsdt
(es + a)3(et + b)3

)
exp

(
−3

∫ 𝜎

0

(
1

(eu + a)2
+ 1
(eu + b)2

)
du

)
.
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18(a + b)3
(∫ 𝜎

0

∫ 𝜎

0

dsdt
(es + a)3(et + b)3

)
︸                                    ︷︷                                    ︸

where to graft the two atoms

exp
(
−3

∫ 𝜎

0

(
1

(eu + a)2
+ 1
(eu + b)2

)
du

)
︸                                                   ︷︷                                                   ︸

conditioning the two Poisson point measures

.
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A disintegration formula

Proposition
Let F and G be measurable non-negative functions. Then

U
(
F (−ℓ∗,−ℓ∗)G (U)

)
=

∫
R+×R+

F (a, b) 2
(a + b)3

E
[
G (U (a,b) )

]
dadb.

Hence, the unicycle U conditioned to have ℓ∗ = −a and ℓ∗ = −b has the law of U (a,b) .
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The new construction, finally

Theorem (M, 2025)
For every a, b > 0, the random surface associated to U (a,b) is distributed as a free
Brownian sphere S with two distinguished points at distance a + b. Moreover, the faces
of U (a,b) correspond to the (a − b)-delayed Voronoï cells of S.
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Applications and perspectives

A couple of applications :
• Explicit distributions of several quantities related to Voronoï cells
• Study of the local behaviour around a geodesic

In the future :
• More results about Voronoï cells
• Explicit distributions for the Brownian annulus ?
• Study of exceptional delays ?
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The End

Thank you for 
your attention !
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