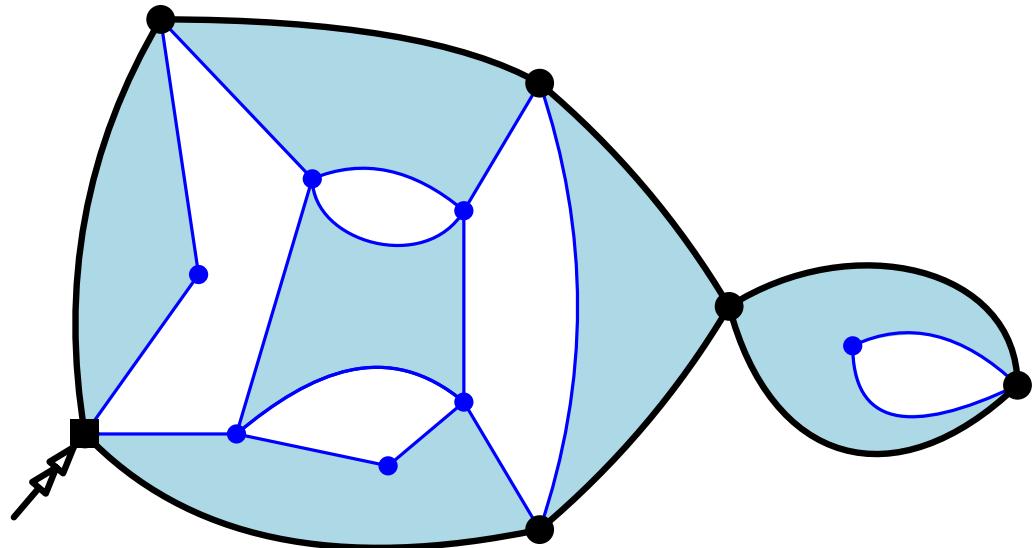


# **Slice decomposition of hypermaps**

**Marie Albenque (CNRS, IRIF, Université Paris cité)**

**joint work with Jérémie Bouttier (IMJ, Sorbonne Université)**

# Hypermaps

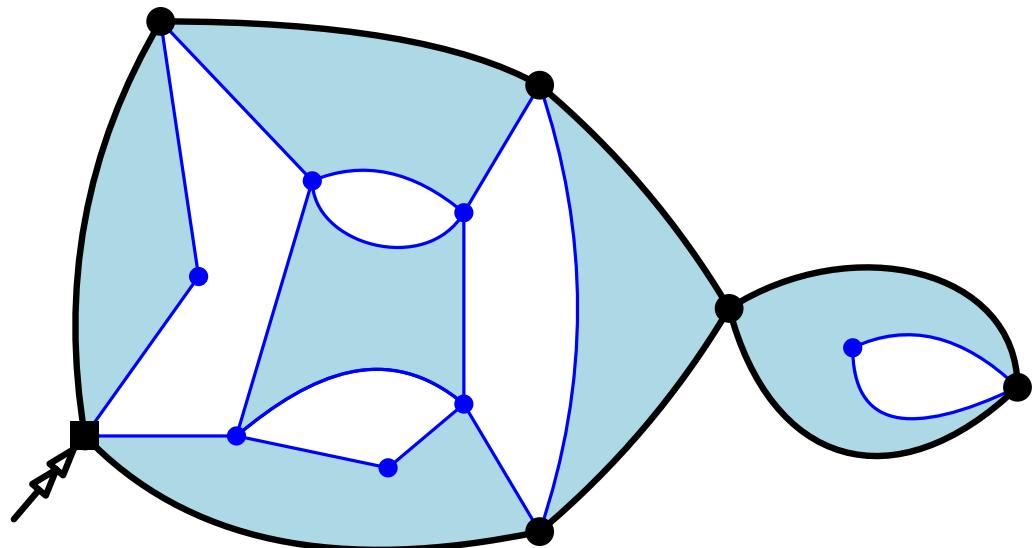


An **hypermap** is a planar map in which the faces can be properly bicolored.

Why “hypermap” ?

- Extend the notion of hypergraphs to maps.
- Blue faces can be seen as **hyper-edges** which connect several vertices.

# Hypermaps

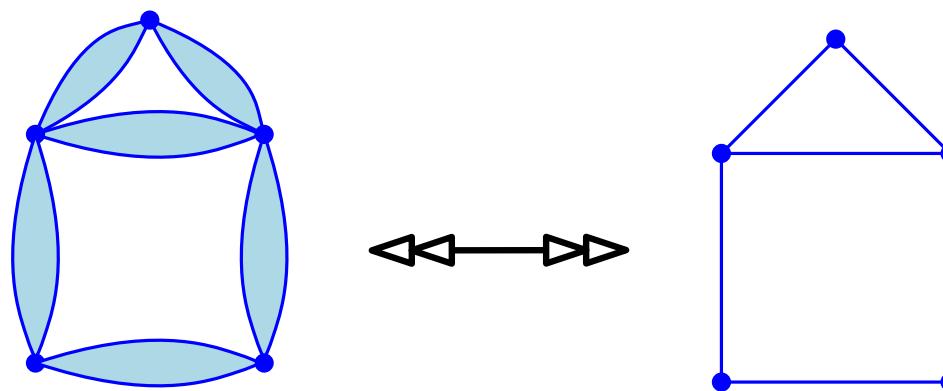


An **hypermap** is a planar map in which the faces can be properly bicolored.

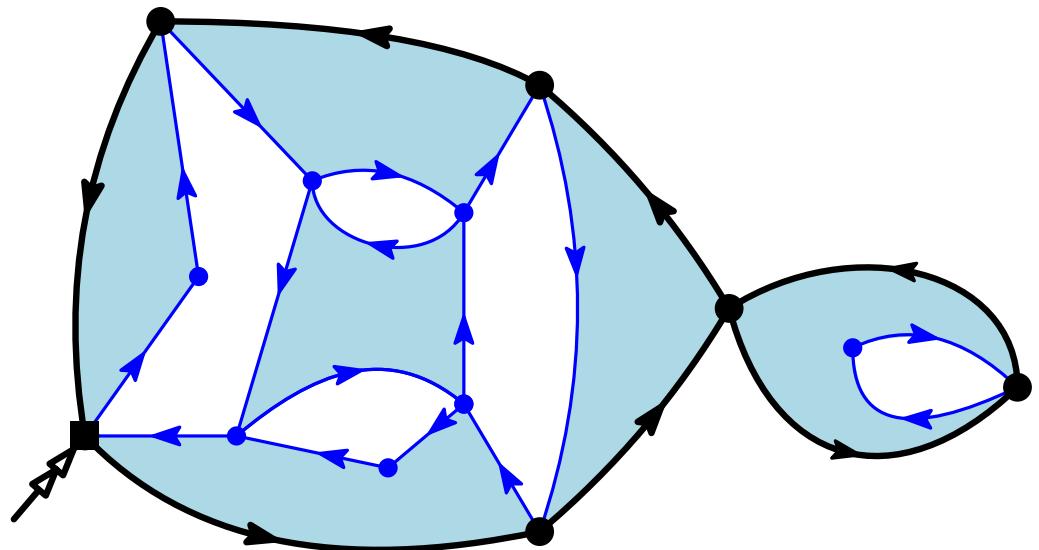
Why “hypermap” ?

- Extend the notion of hypergraphs to maps.
- Blue faces can be seen as **hyper-edges** which connect several vertices.

Hypermaps are a generalization of general maps:



# Hypermaps



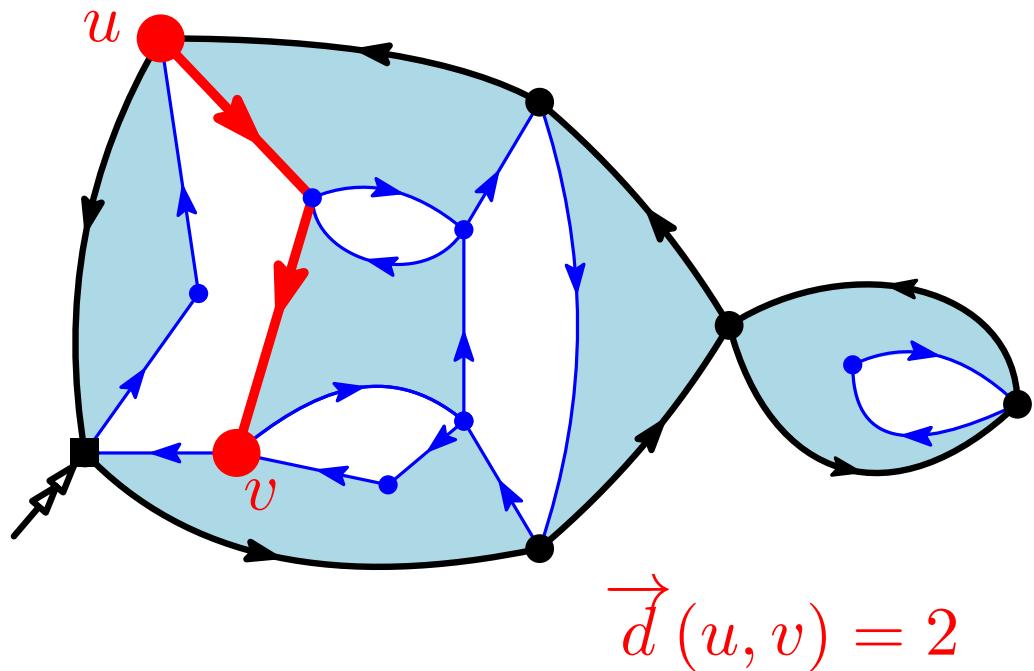
An **hypermap** is a planar map in which the faces can be properly bicolored.

Why “hypermap” ?

- Extend the notion of hypergraphs to maps.
- Blue faces can be seen as **hyper-edges** which connect several vertices.

Edges of an hypermap can be **canonically oriented**, by requiring that the contour of each face is a directed cycle (the color of the face determines the orientation of the cycle).

# Hypermaps



An **hypermap** is a planar map in which the faces can be properly bicolored.

Why “hypermap” ?

- Extend the notion of hypergraphs to maps.
- Blue faces can be seen as **hyper-edges** which connect several vertices.

Edges of an hypermap can be **canonically oriented**, by requiring that the contour of each face is a directed cycle (the color of the face determines the orientation of the cycle).

Oriented (pseudo)-distance on the hypermap: **oriented graph distance**.

## Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from **theoretical physics**:

- **2-matrix models** ([Itzykson-Zuber 1980], [Eynard et al. 2000's])
- **Ising model on maps** ([Kazakov 1986])
- **Integrability** in the context of the 2-Toda hierarchy

# Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from **theoretical physics**:

- **2-matrix models** ([Itzykson-Zuber 1980], [Eynard et al. 2000's])
- **Ising model on maps** ([Kazakov 1986])
- **Integrability** in the context of the 2-Toda hierarchy

But also in **combinatorics**:

- Bijections with **blossoming trees**, [Bousquet-Mélou - Schaeffer 2002]
- Bijections with **mobiles**, [Bouttier - Di Francesco - Guitter 2004]
- Unifying bijections with girth constraints [Bernardi - Fusy 2020]

# Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from **theoretical physics**:

- **2-matrix models** ([Itzykson-Zuber 1980], [Eynard et al. 2000's])
- **Ising model on maps** ([Kazakov 1986])
- **Integrability** in the context of the 2-Toda hierarchy

But also in **combinatorics**:

- Bijections with **blossoming trees**, [Bousquet-Mélou - Schaeffer 2002]
- Bijections with **mobiles**, [Bouttier - Di Francesco - Guitter 2004]
- Unifying bijections with girth constraints [Bernardi - Fusy 2020]

**Goal of this talk:** Obtain some **bijective proofs** for the enumerative formulas of hypermaps obtained previously by algebraic manipulations [Eynard's book 2016].

# Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from **theoretical physics**:

- **2-matrix models** ([Itzykson-Zuber 1980], [Eynard et al. 2000's])
- **Ising model on maps** ([Kazakov 1986])
- **Integrability** in the context of the 2-Toda hierarchy

But also in **combinatorics**:

- Bijections with **blossoming trees**, [Bousquet-Mélou - Schaeffer 2002]
- Bijections with **mobiles**, [Bouttier - Di Francesco - Guitter 2004]
- Unifying bijections with girth constraints [Bernardi - Fusy 2020]

**Goal of this talk:** Obtain some **bijective proofs** for the enumerative formulas of hypermaps obtained previously by algebraic manipulations [Eynard's book 2016].

To do that, we extend the **slice decomposition** of [Bouttier-Guitter] to hypermaps.

## Hypermaps with boundaries: enumeration

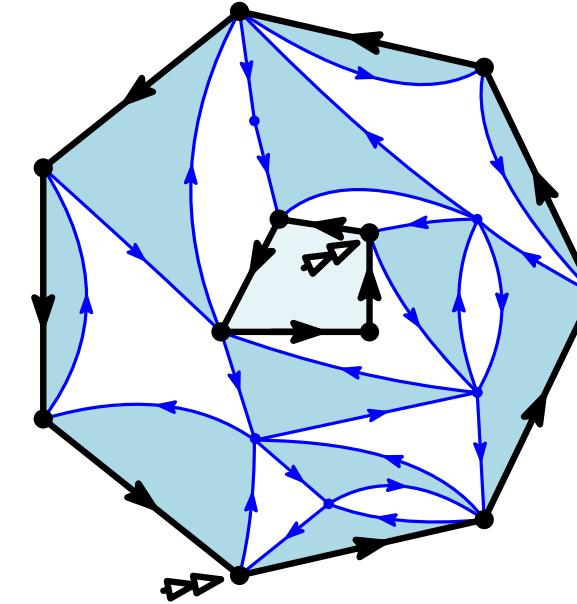
A map **with boundaries** is a map where some faces are marked (and rooted). Other faces are called **inner faces**.

# Hypermaps with boundaries: enumeration

A map **with boundaries** is a map where some faces are marked (and rooted). Other faces are called **inner faces**.

- **Hypermap with monochromatic boundaries:**

All faces (inner and boundaries) are colored.  
↔ The contour of all faces are directed cycles.

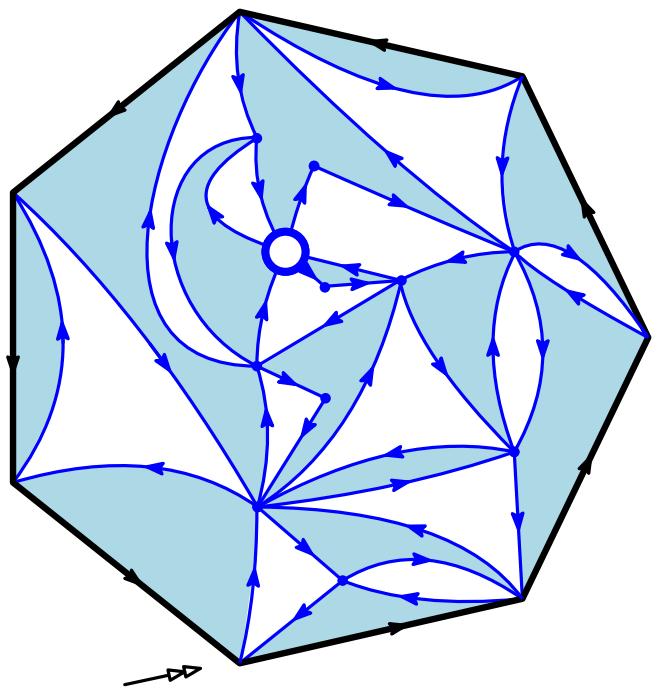


The weight of an hypermap  $m$  is defined by:

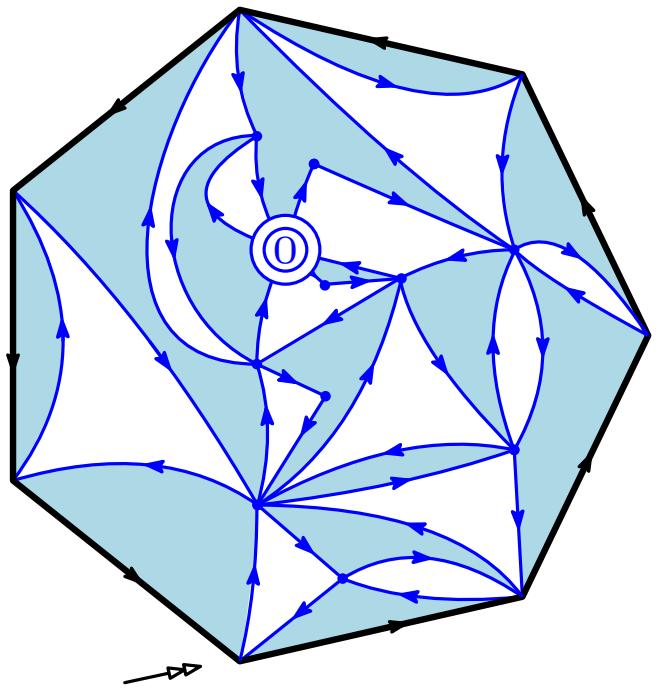
$$w(m) := t^{| \text{vertices of } m |} \prod_{f \in F_{\text{inn}}^{\circ}} t_{\deg(f)}^{\circ} \prod_{f \in F_{\text{inn}}^{\bullet}} t_{\deg(f)}^{\bullet}$$

where  $t, t_1^{\bullet}, t_2^{\bullet}, \dots, t_1^{\circ}, t_2^{\circ}$  are formal variables.

# First example slice decomposition on pointed disks

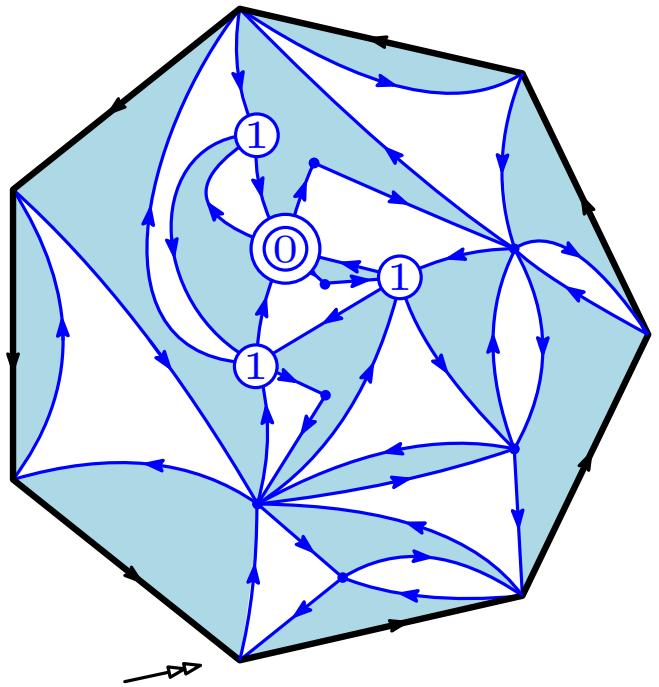


# First example slice decomposition on pointed disks



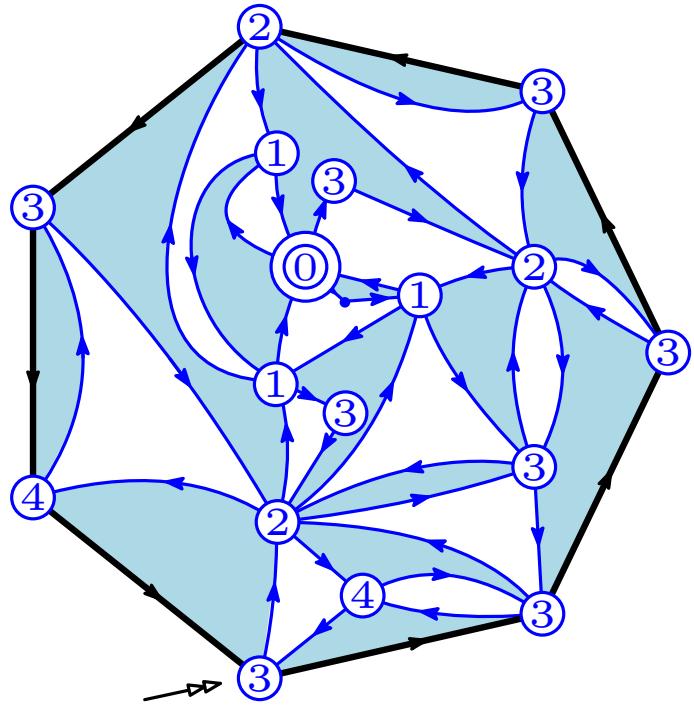
- ① Label every vertices by their **oriented distance** to the pointed vertex.

# First example slice decomposition on pointed disks



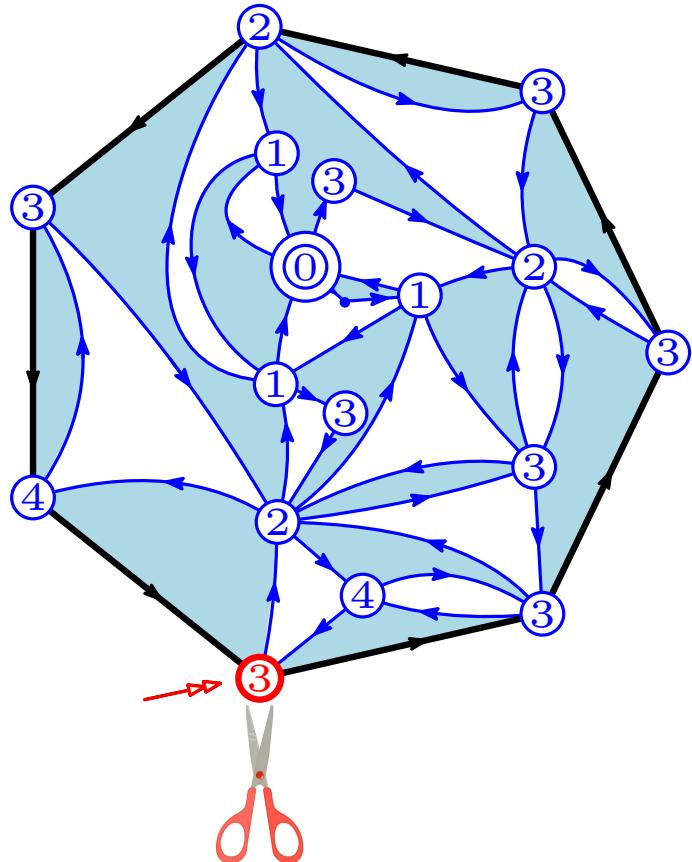
- ① Label every vertices by their **oriented distance** to the pointed vertex.

# First example slice decomposition on pointed disks



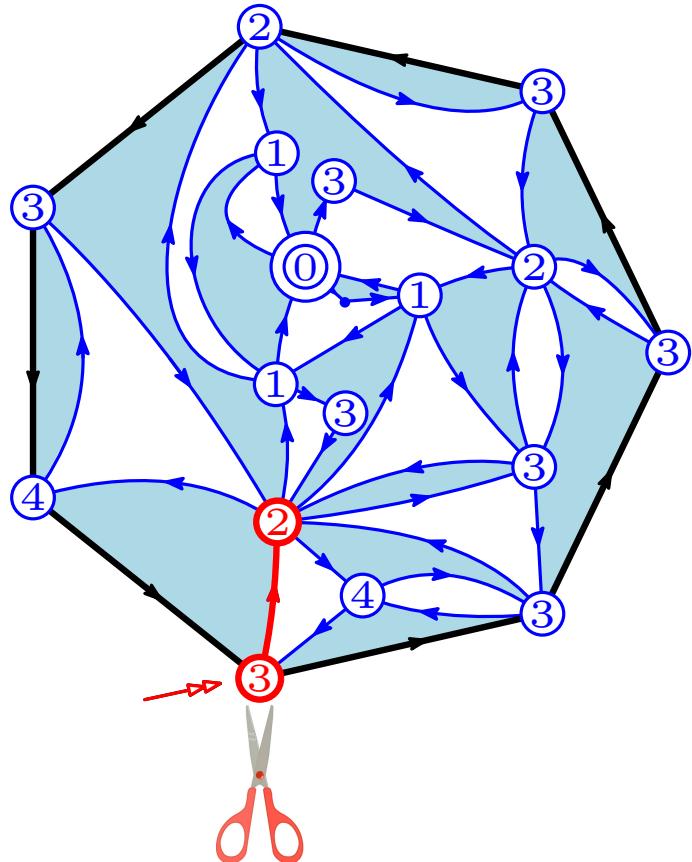
- ① Label every vertices by their **oriented distance** to the pointed vertex.

# First example slice decomposition on pointed disks



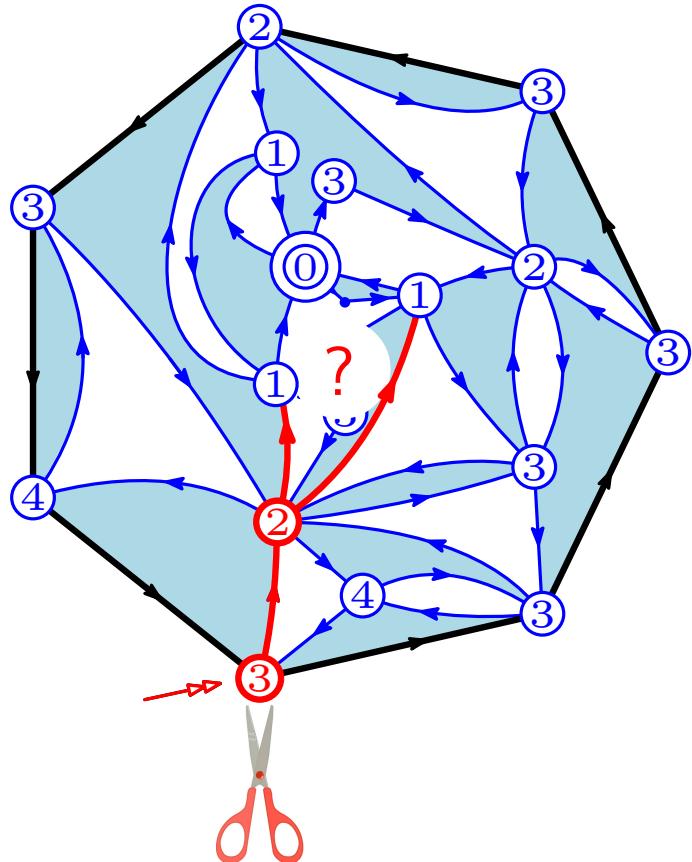
- ① Label every vertices by their **oriented distance** to the pointed vertex.
- ② Cut the hypermap along the leftmost geodesic started at the root corner.

# First example slice decomposition on pointed disks



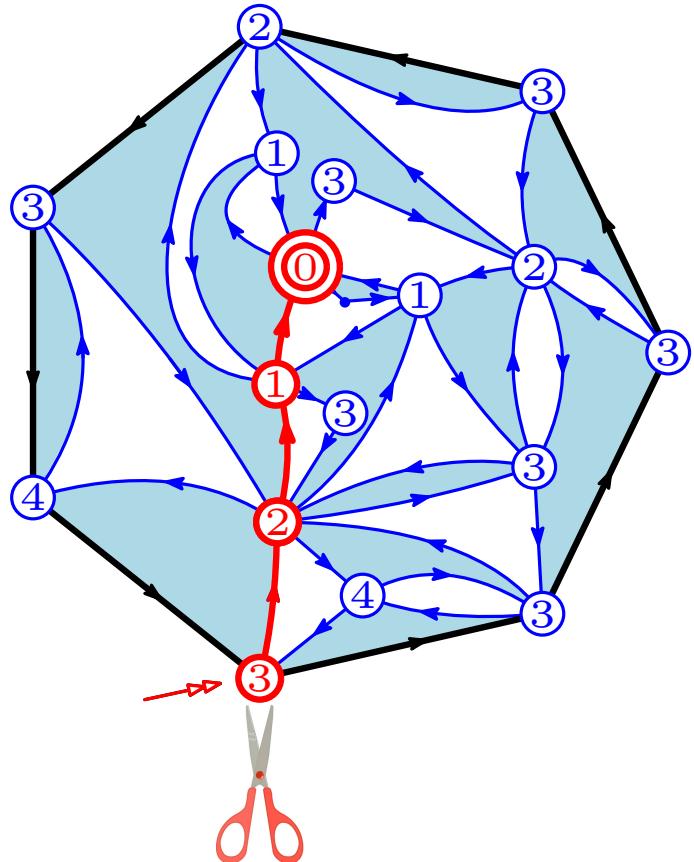
- ① Label every vertices by their **oriented distance** to the pointed vertex.
- ② Cut the hypermap along the leftmost geodesic started at the root corner.

# First example slice decomposition on pointed disks



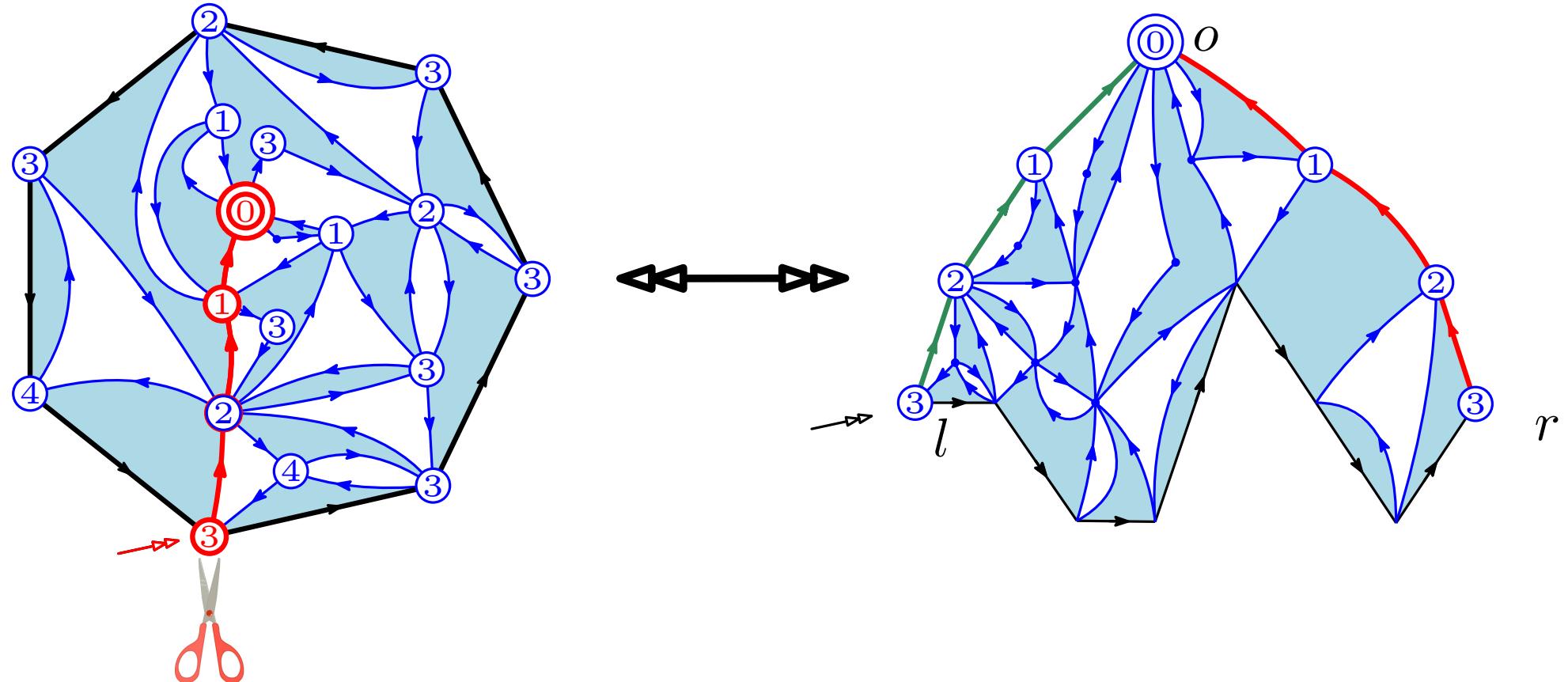
- ① Label every vertices by their **oriented distance** to the pointed vertex.
- ② Cut the hypermap along the **leftmost** geodesic started at the root corner.

# First example slice decomposition on pointed disks



- ① Label every vertices by their **oriented distance** to the pointed vertex.
- ② Cut the hypermap along the **leftmost** geodesic started at the root corner.

# First example slice decomposition on pointed disks



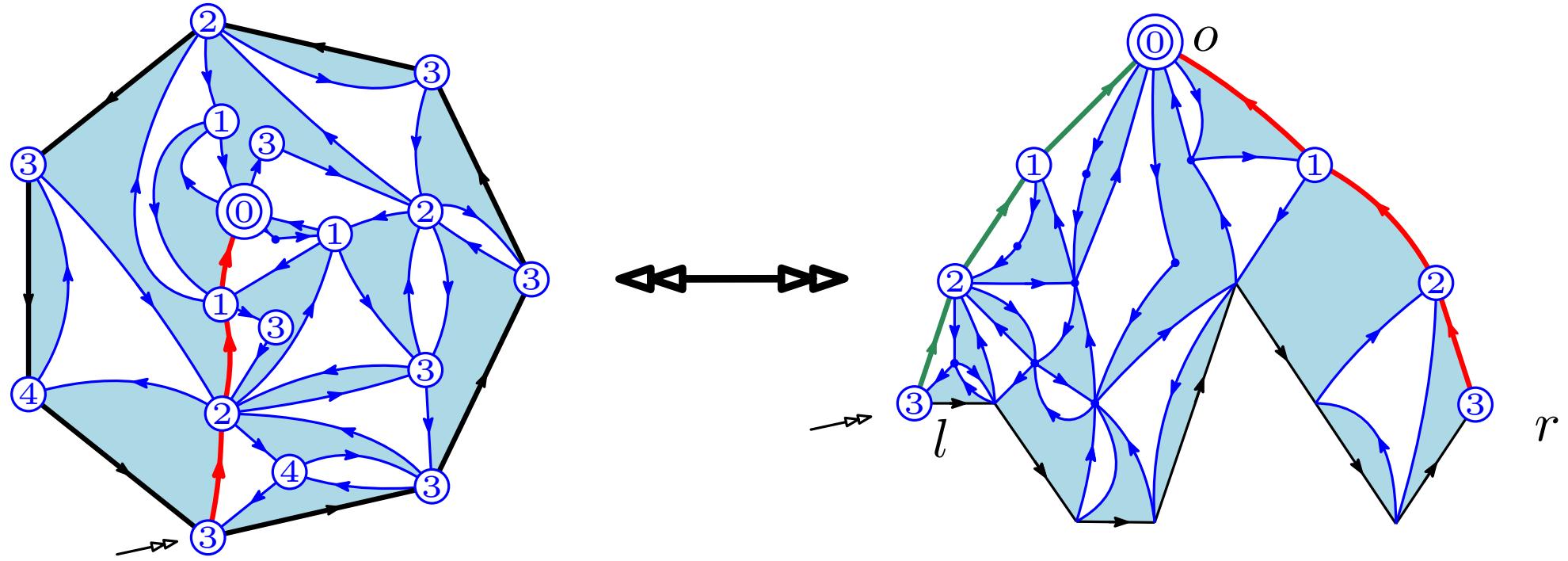
- ① Label every vertices by their **oriented distance** to the pointed vertex.
- ② Cut the hypermap along the **leftmost** geodesic started at the root corner.
- ③ Open the map into a **slice**.

# First example slice decomposition on pointed disks



- ① Label every vertices by their **oriented distance** to the pointed vertex.
- ② Cut the hypermap along the **leftmost** geodesic started at the root corner.
- ③ Open the map into a **slice**.

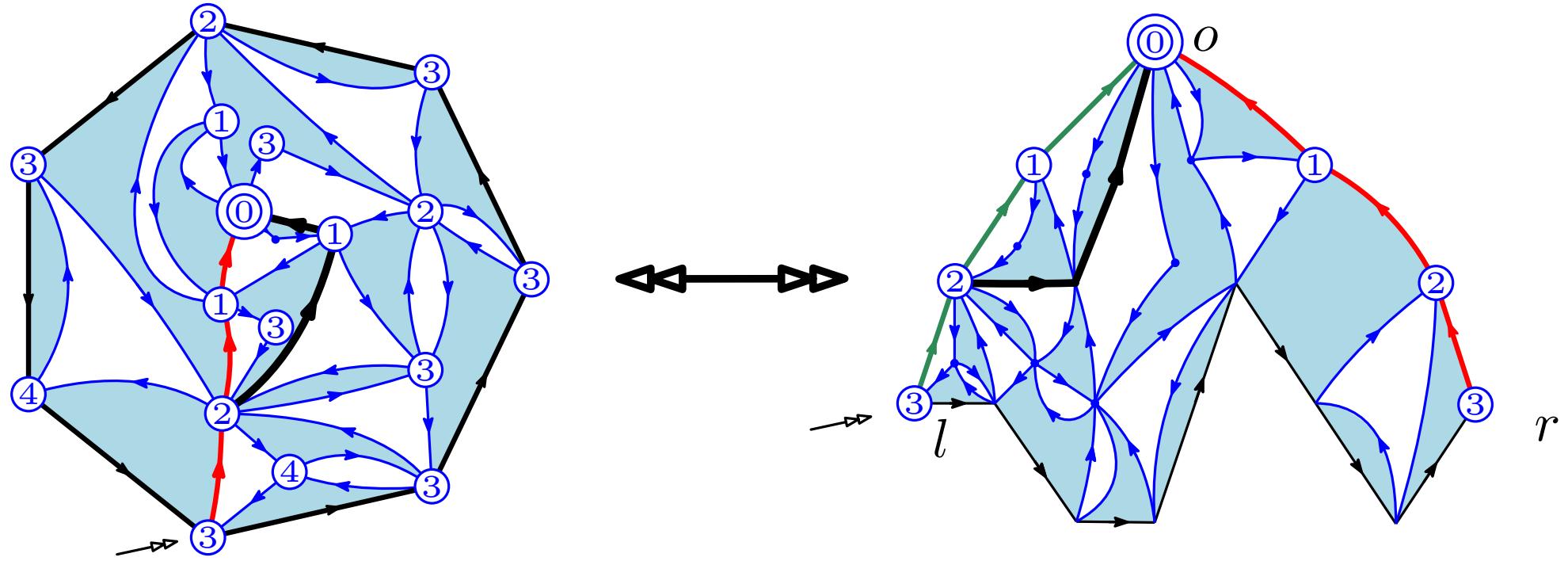
# First example slice decomposition on pointed disks



A **(hyper)-slice** is an hypermap with a boundary and 3 marked corners  $l$ ,  $r$  and  $o$  such that:

- the **left boundary** from  $l$  to  $o$  is a **geodesic** (green edges)
- the **right boundary** from  $r$  to  $o$  is the **unique geodesic** (red edges),
- the **base** (black edges) is either oriented from  $l$  to  $r$  ("type A")  
or from  $r$  to  $l$  ("type B"),
- and the left and the right boundaries intersect only at  $o$ .

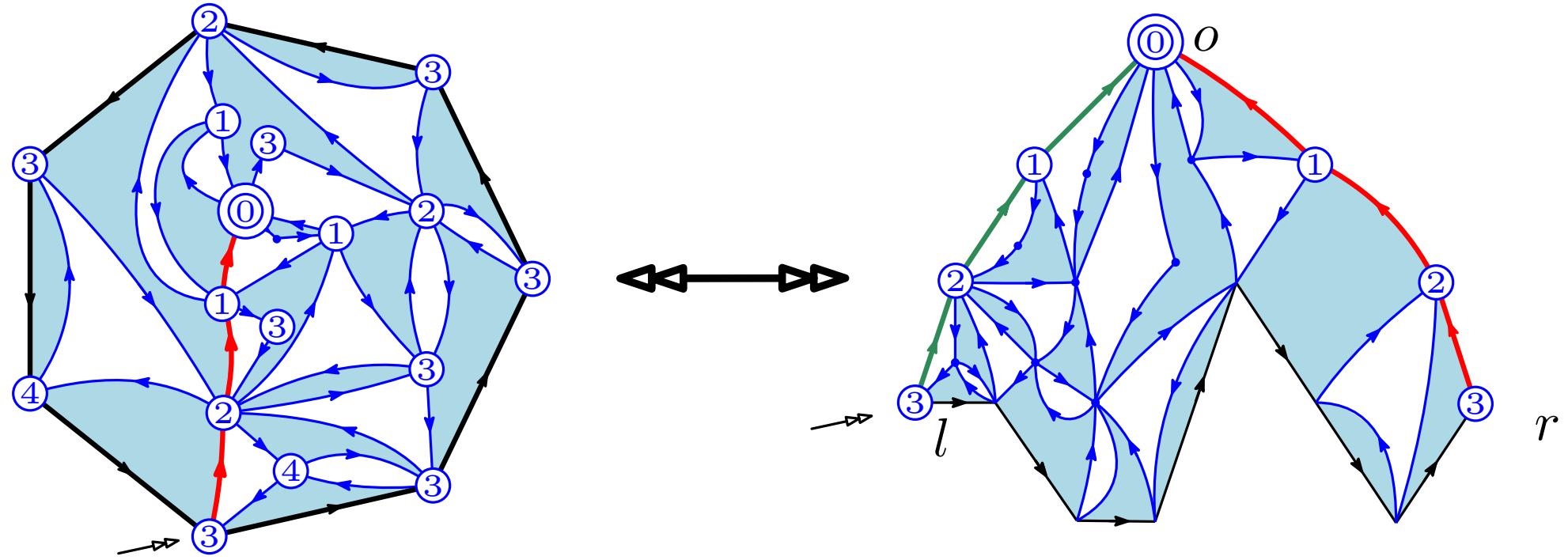
# First example slice decomposition on pointed disks



A **(hyper)-slice** is an hypermap with a boundary and 3 marked corners  $l$ ,  $r$  and  $o$  such that:

- the **left boundary** from  $l$  to  $o$  is a **geodesic** (green edges)
- the **right boundary** from  $r$  to  $o$  is the **unique geodesic** (red edges),
- the **base** (black edges) is either oriented from  $l$  to  $r$  ("type A")  
or from  $r$  to  $l$  ("type B"),
- and the left and the right boundaries intersect only at  $o$ .

# First example slice decomposition on pointed disks



A **(hyper)-slice** is an hypermap with a boundary and 3 marked corners  $l$ ,  $r$  and  $o$  such that:

- the **left boundary** from  $l$  to  $o$  is a **geodesic** (green edges)
- the **right boundary** from  $r$  to  $o$  is the **unique geodesic** (red edges),
- the **base** (black edges) is either oriented from  $l$  to  $r$  ("type A")  
or from  $r$  to  $l$  ("type B"),
- and the left and the right boundaries intersect only at  $o$ .

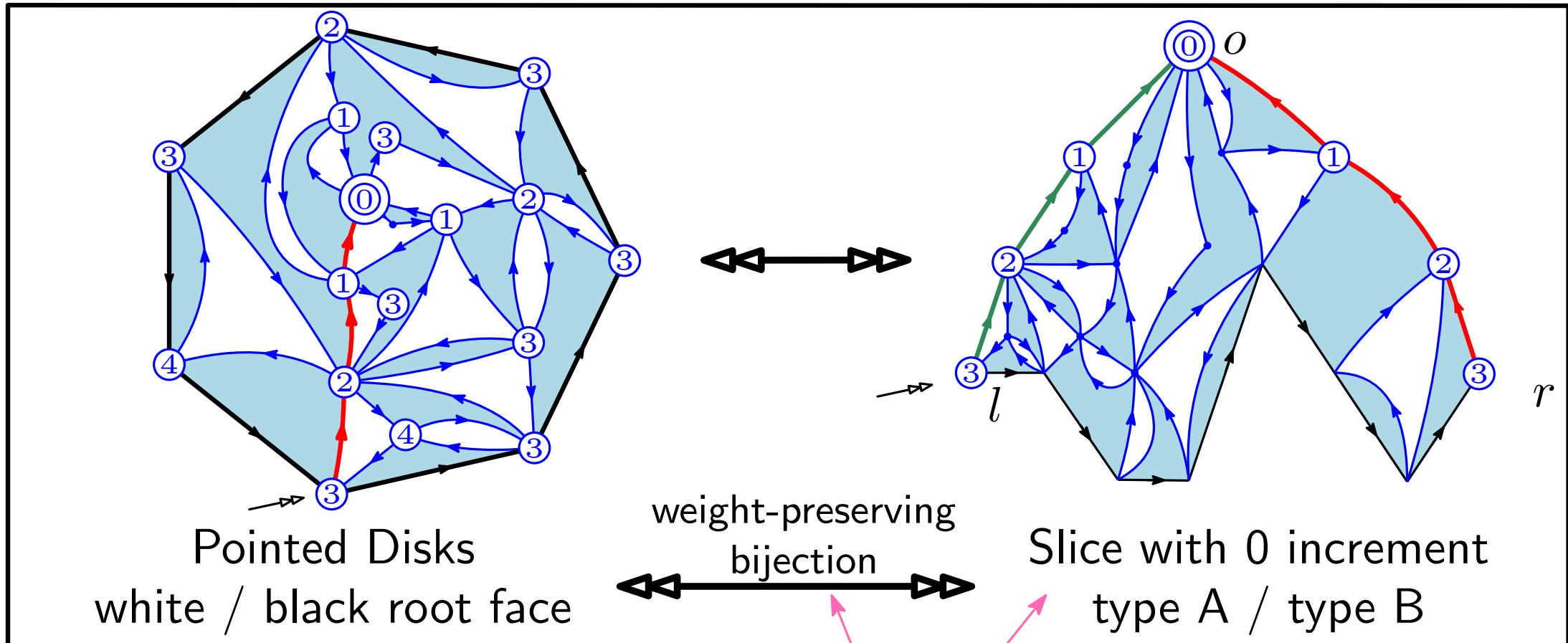
The **increment** of a  $A$ -slice (resp.  $B$ -slice) is a difference between the labels of  $r$  and of  $l$  (resp.  $l$  and  $r$ ).

# First example slice decomposition on pointed disks



The **increment** of a  $A$ -slice (resp.  $B$ -slice) is a difference between the labels of  $r$  and of  $l$  (resp.  $l$  and  $r$ ).

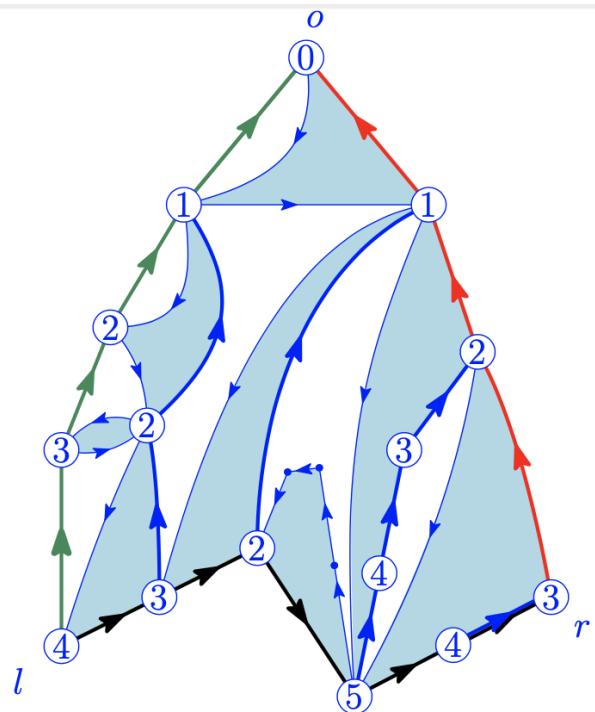
# First example slice decomposition on pointed disks



The **increment** of a *A*-slice (resp. *B*-slice) is a difference between the labels of  $r$  and of  $l$  (resp.  $l$  and  $r$ ).

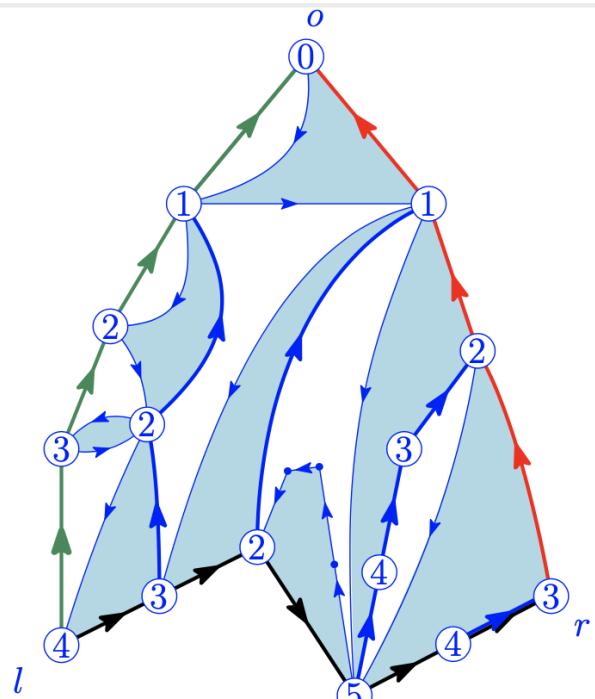
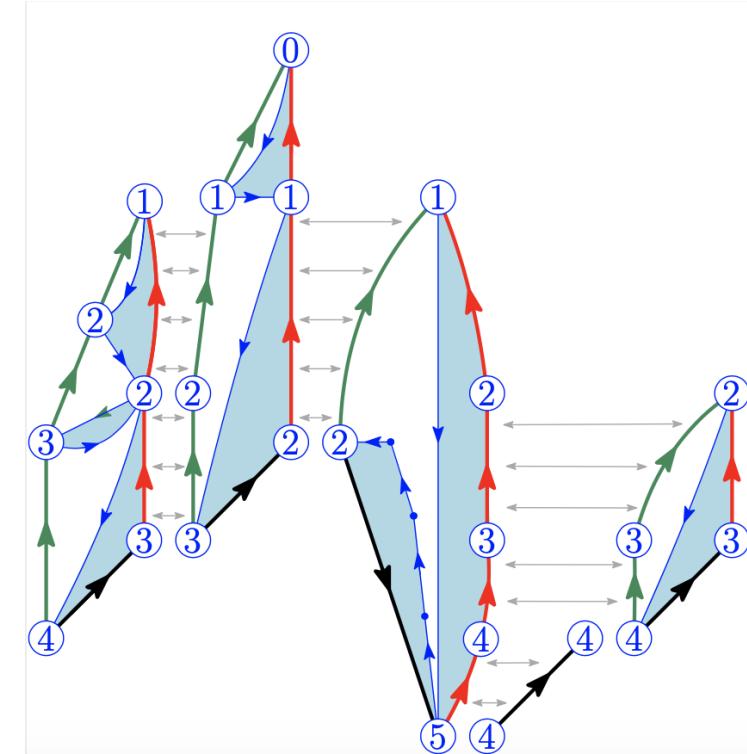
# Why does this help ? Decomposition of slices

Slices can be further decomposed into “elementary slices”:



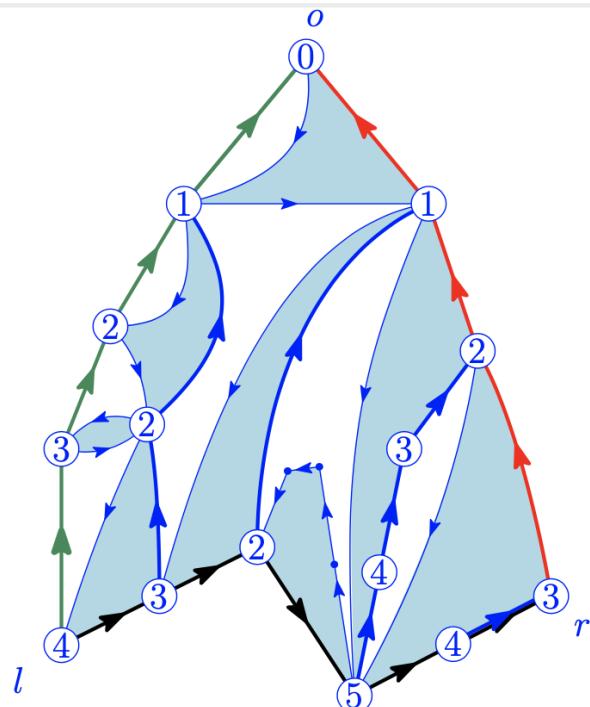
# Why does this help ? Decomposition of slices

Slices can be further decomposed into “elementary slices” :

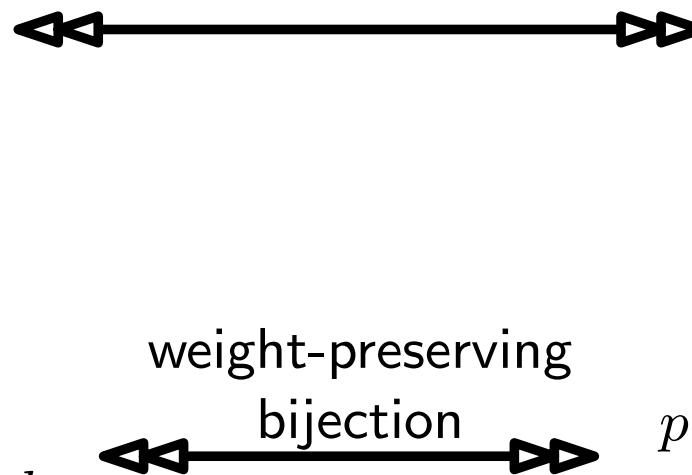


# Why does this help ? Decomposition of slices

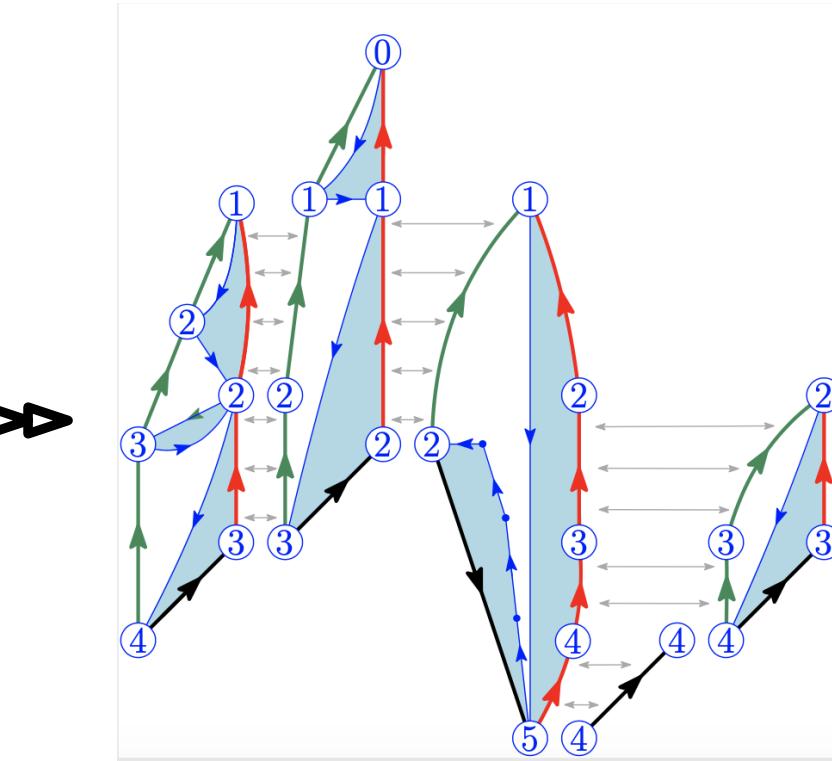
Slices can be further decomposed into “elementary slices”:



Type A / B slice with  
base of length  $p$  and increment  $k$



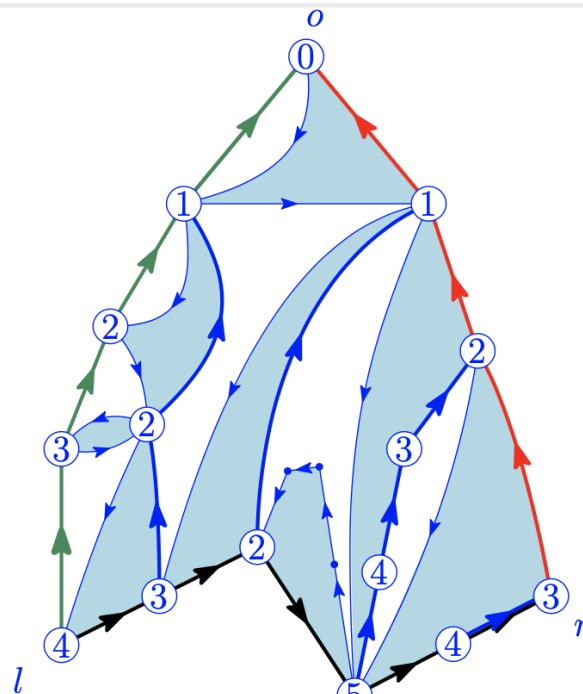
weight-preserving  
bijection



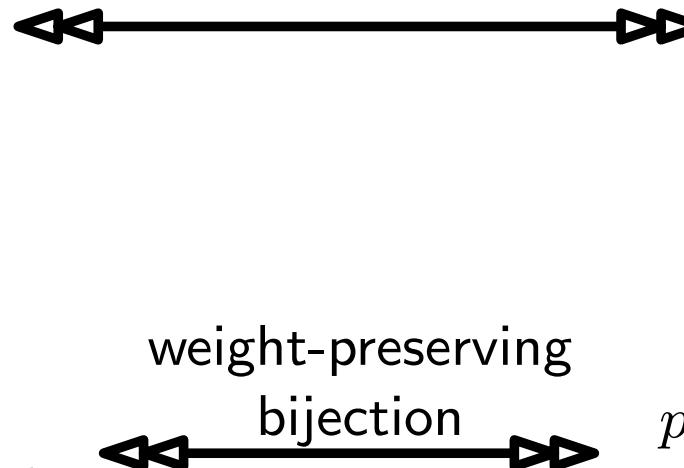
$p$ -tuple of type A/B **elementary** slices  
s.t. sum of increment =  $k$

# Why does this help ? Decomposition of slices

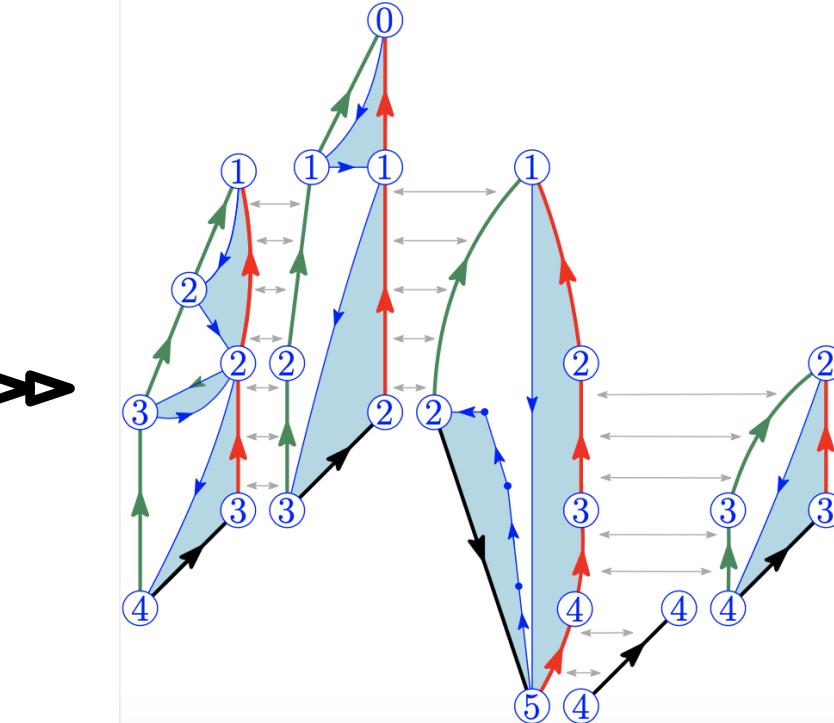
Slices can be further decomposed into “elementary slices”:



Type A / B slice with  
base of length  $p$  and increment  $k$



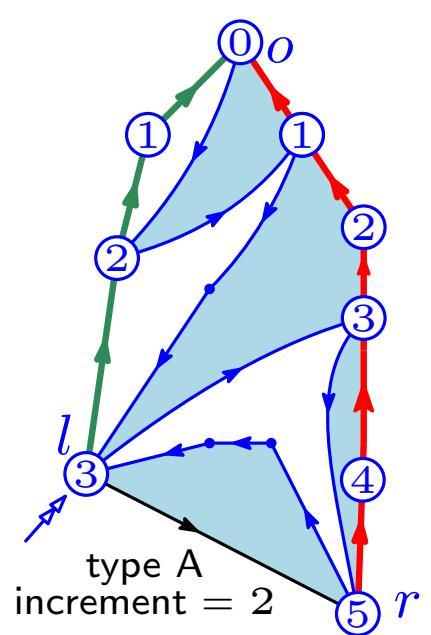
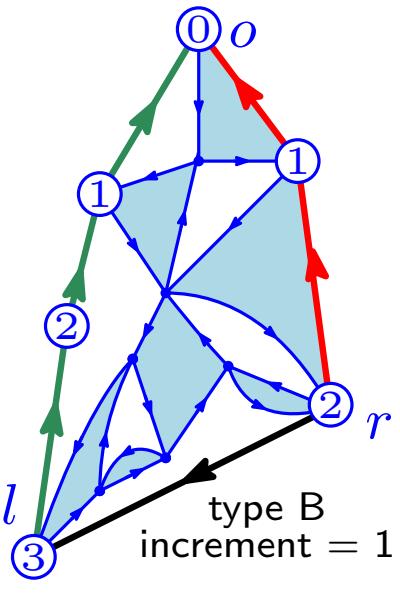
weight-preserving  
bijection



$p$ -tuple of type A/B **elementary** slices  
s.t. sum of increment =  $k$

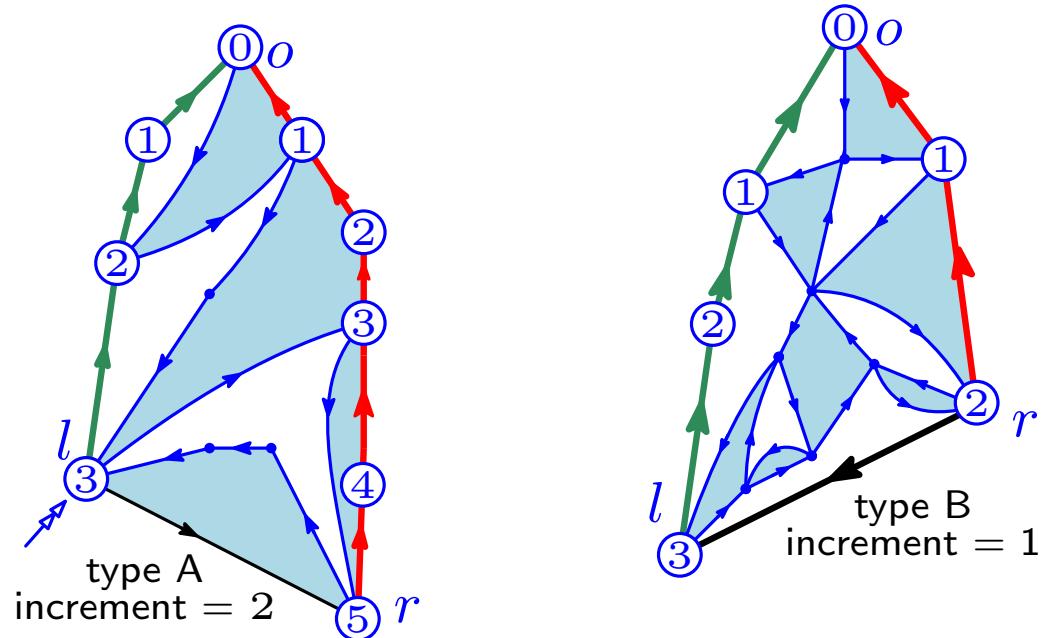
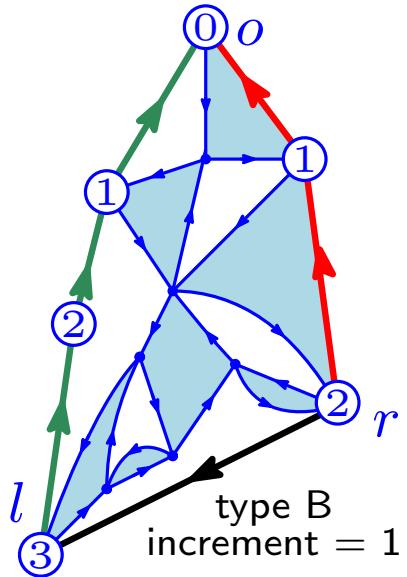
**Elementary slice:** slice with a base of length 1.

# Why does this help ?? Enumeration of elementary slices



For  $k \in \mathbb{Z}$ ,  $a_k, b_k :=$  generating series of elementary slices of type A/B and increment  $k$ .

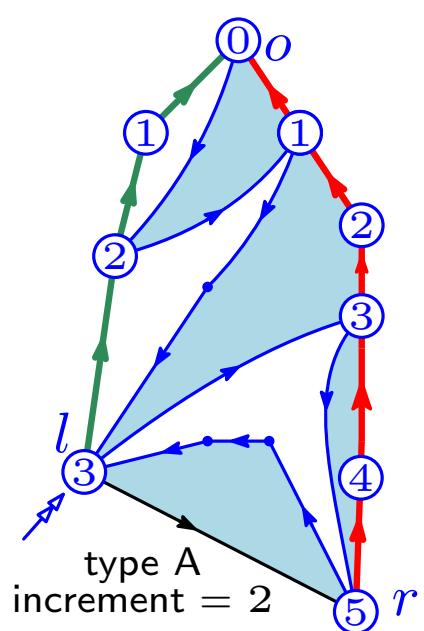
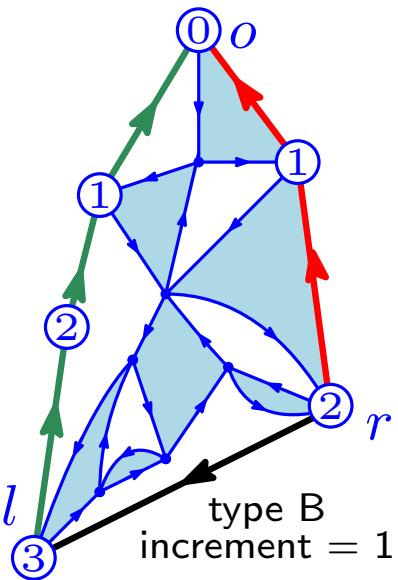
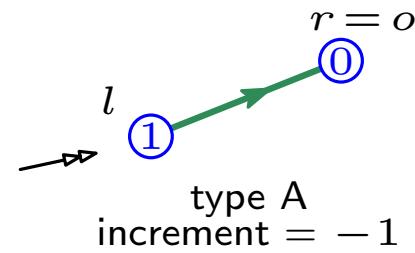
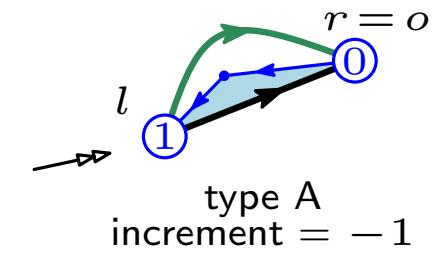
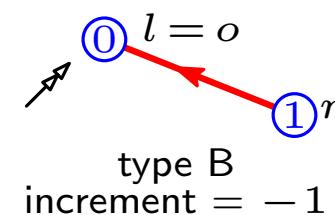
# Why does this help ?? Enumeration of elementary slices



For  $k \in \mathbb{Z}$ ,  $a_k, b_k :=$  generating series of elementary slices of type A/B and increment  $k$ .

First properties :  $\bullet a_k = b_k = 0$  for  $k < -1$ .

# Why does this help ?? Enumeration of elementary slices

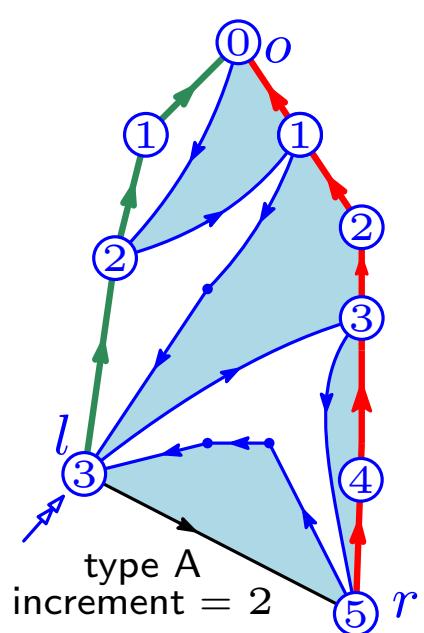
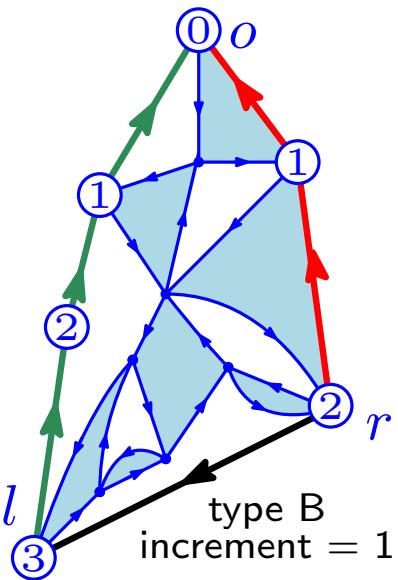
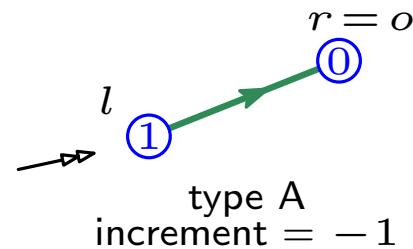
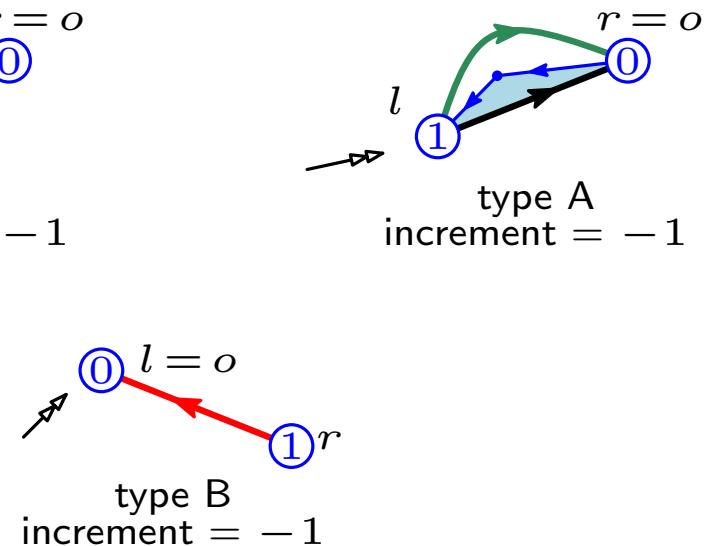


For  $k \in \mathbb{Z}$ ,  $a_k, b_k :=$  generating series of elementary slices of type A/B and increment  $k$ .

First properties : 

- $a_k = b_k = 0$  for  $k < -1$ .
- $b_{-1} = 1$

# Why does this help ?? Enumeration of elementary slices



For  $k \in \mathbb{Z}$ ,  $a_k, b_k :=$  generating series of elementary slices of type A/B and increment  $k$ .

First properties : 

- $a_k = b_k = 0$  for  $k < -1$ .
- $b_{-1} = 1$

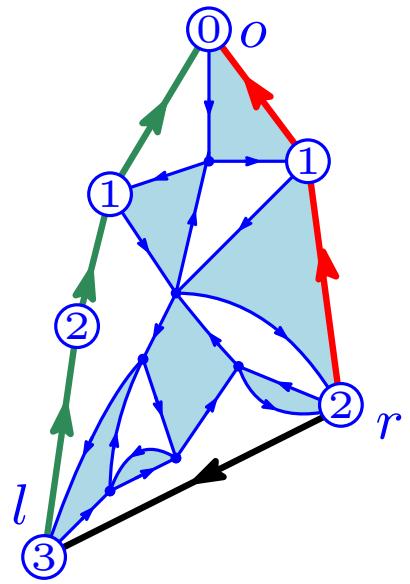
We combine all these quantities into two Laurent series:

$$x(z) := \sum_{k \geq -1} a_k z^{-k}, \quad y(z) := \sum_{k \geq -1} b_k z^k.$$

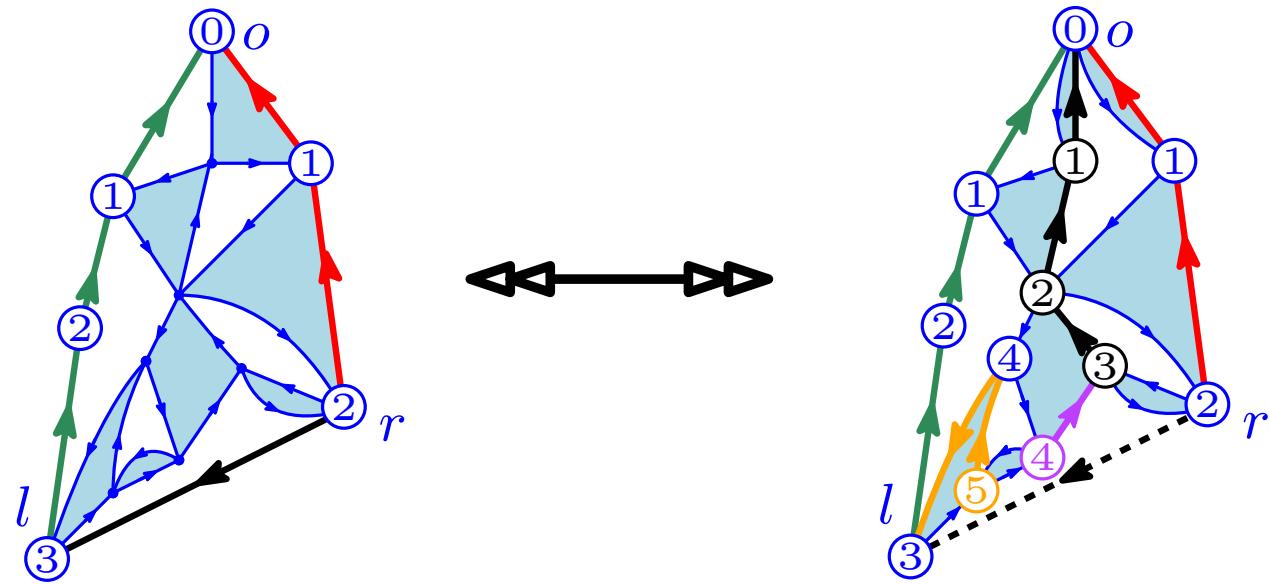
## Main result:

All “natural” generating series of hypermaps can be expressed in terms of  $x(z)$  and  $y(z)$  = “spectral curve”.

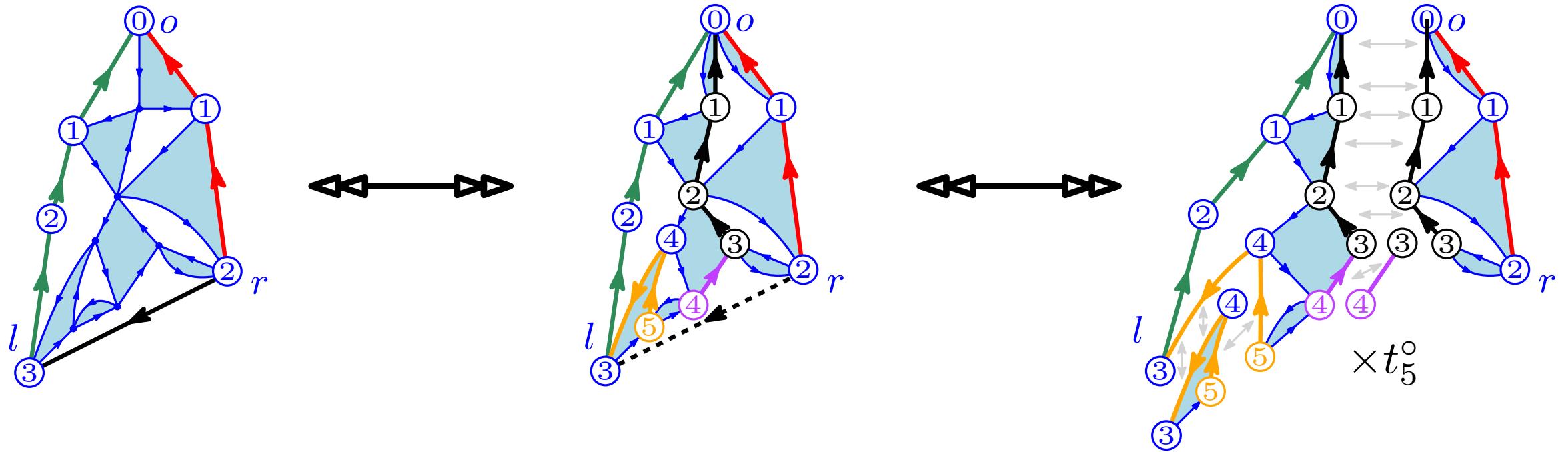
## Why does this help ??? Decomposition of elementary slices



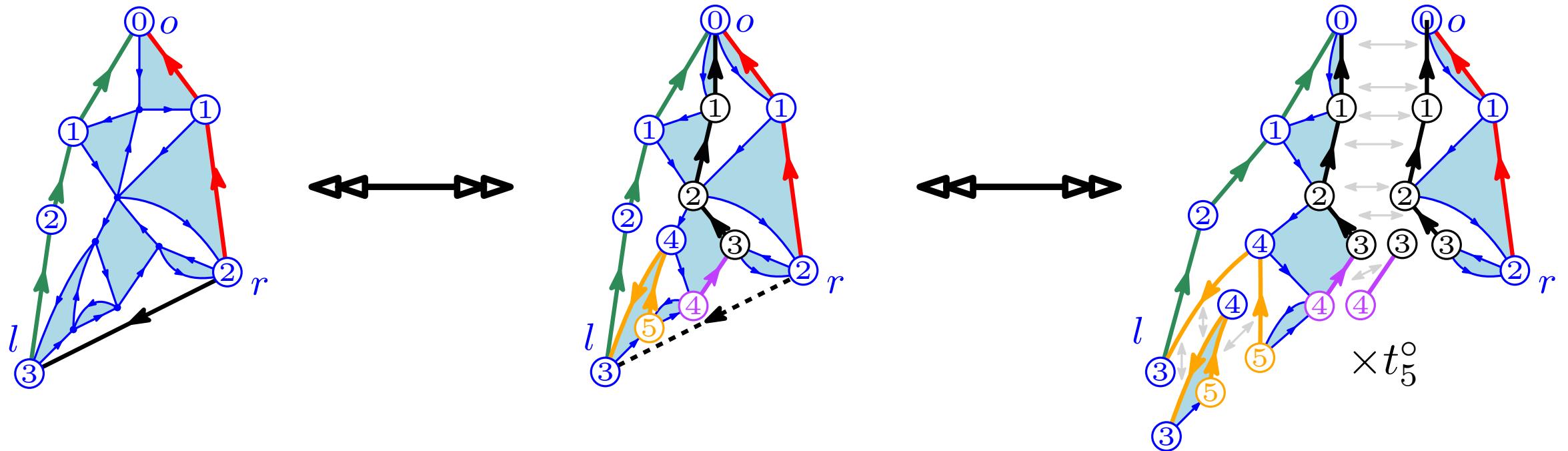
# Why does this help ???? Decomposition of elementary slices



# Why does this help ???? Decomposition of elementary slices



# Why does this help ???? Decomposition of elementary slices

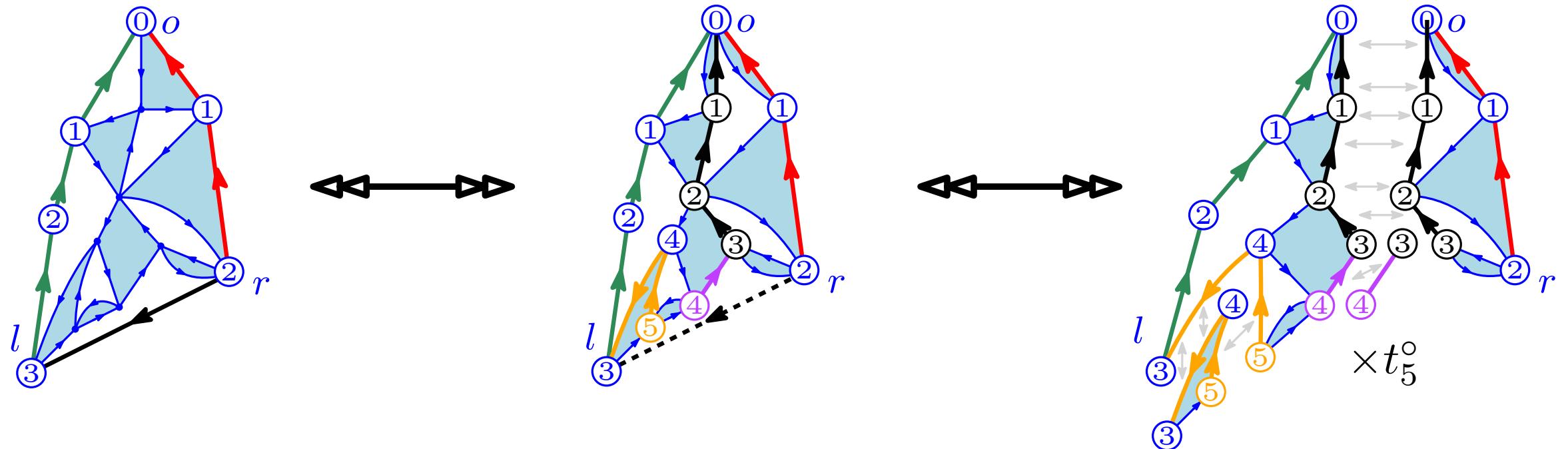


The generating series of elementary slices are uniquely determined by the following recursive system of equations:

$$a_k = t\delta_{k,-1} + \sum_{d \geq 1} t_d^\bullet[z^k]y(z)^{d-1} \quad \text{for } k \geq -1$$

$$b_{-1} = 1 \quad \text{and} \quad b_k = \sum_{d \geq 1} t_d^o[z^{-k}]x(z)^{d-1} \quad \text{for } k \geq 0$$

# Why does this help ??? Decomposition of elementary slices



The generating series of elementary slices are uniquely determined by the following recursive system of equations:

$$a_k = t\delta_{k,-1} + \sum_{d \geq 1} t_d^\bullet [z^k] y(z)^{d-1} \quad \text{for } k \geq -1$$

$$b_{-1} = 1 \quad \text{and} \quad b_k = \sum_{d \geq 1} t_d^o [z^{-k}] x(z)^{d-1} \quad \text{for } k \geq 0$$

- This system is algebraic when the degree of the faces are assumed to be bounded.
- Same system of equations as [Bousquet-Mélou, Schaeffer 02] + the system of [Bouttier, Di Francesco, Guitter 04] can be recovered using an additional combinatorial construction.

# Elementary slices for Eulerian triangulations

The generating series of elementary slices are uniquely determined by the following recursive system of equations:

$$a_k = t\delta_{k,1} + \sum_{d \geq 1} t_d^\bullet [z^k] y(z)^{d-1} \quad \text{for } k \leq 1$$

$$b_{-1} = 1 \quad \text{and} \quad b_k = \sum_{d \geq 1} t_d^\circ [z^k] x(z)^{d-1} \quad \text{for } k \geq 0$$

**Eulerian triangulations:**

$t_3^\circ = t_3^\bullet = 1$  and  $t_k^\circ = t_k^\bullet = 0$  for  $k \neq 3$ :

Along an edge labels either decrease by 1 or increase by 2:

$$\Rightarrow a_k, b_k = 0 \text{ if } k \neq -1, 2$$

# Elementary slices for Eulerian triangulations

The generating series of elementary slices are uniquely determined by the following recursive system of equations:

$$a_k = t\delta_{k,1} + \sum_{d \geq 1} t_d^\bullet[z^k]y(z)^{d-1} \quad \text{for } k \leq 1$$

$$b_{-1} = 1 \quad \text{and} \quad b_k = \sum_{d \geq 1} t_d^\circ[z^k]x(z)^{d-1} \quad \text{for } k \geq 0$$

**Eulerian triangulations:**

$t_3^\circ = t_3^\bullet = 1$  and  $t_k^\circ = t_k^\bullet = 0$  for  $k \neq 3$ :

Along an edge labels either decrease by 1 or increase by 2:

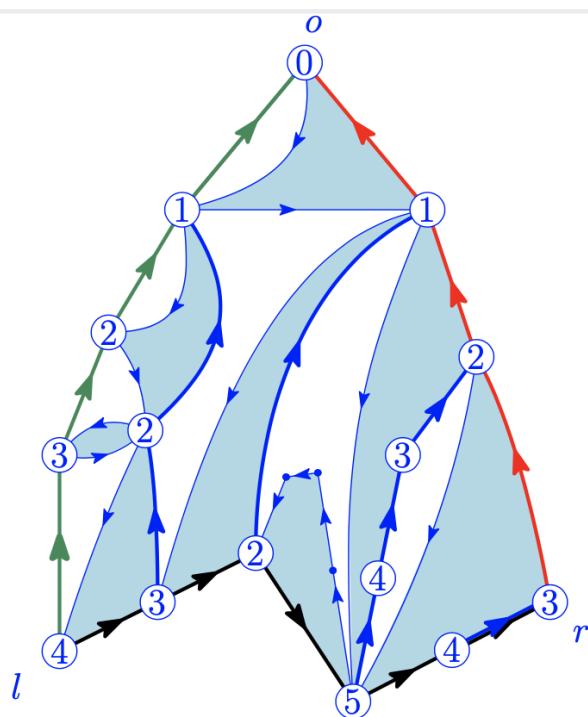
$$\Rightarrow a_k, b_k = 0 \text{ if } k \neq -1, 2$$

We get the following system of equations:

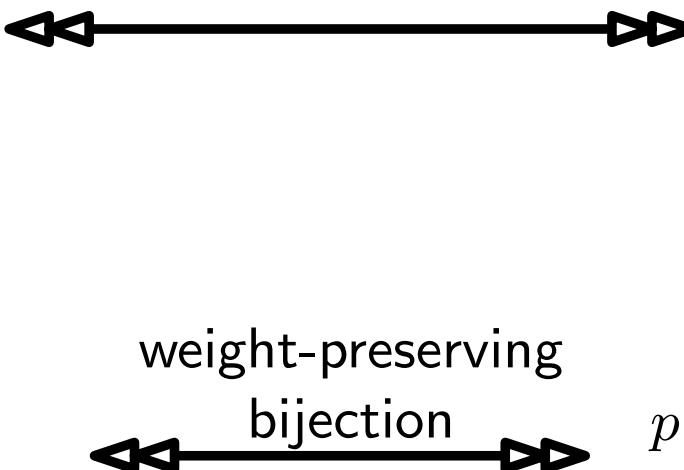
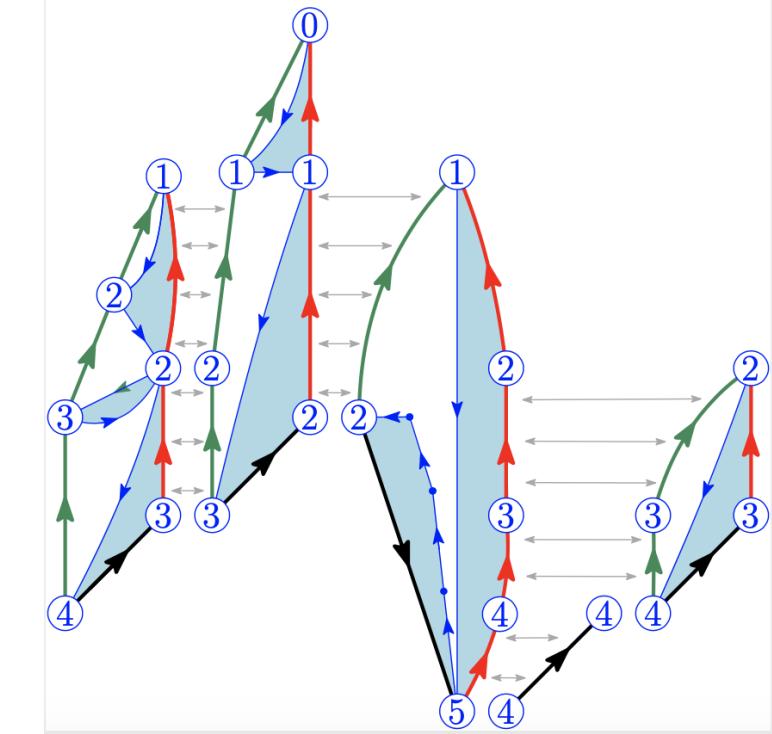
$$\begin{cases} x(z) = a_{-1}z + \frac{1}{z^2} \\ y(z) = \frac{1}{z} + a_{-1}^2 z^2 \\ a_{-1} = t + 2a_{-1}^2 \end{cases}$$

So that  $a_{-1} = t + 2t^2 + 8t^3 + 40t^4 + 224t^5 + 1344t^6 + 8448t^7 + o(t^7)$

# Generating series of slices



Type A / B slice with  
base of length  $p$  and increment  $k$

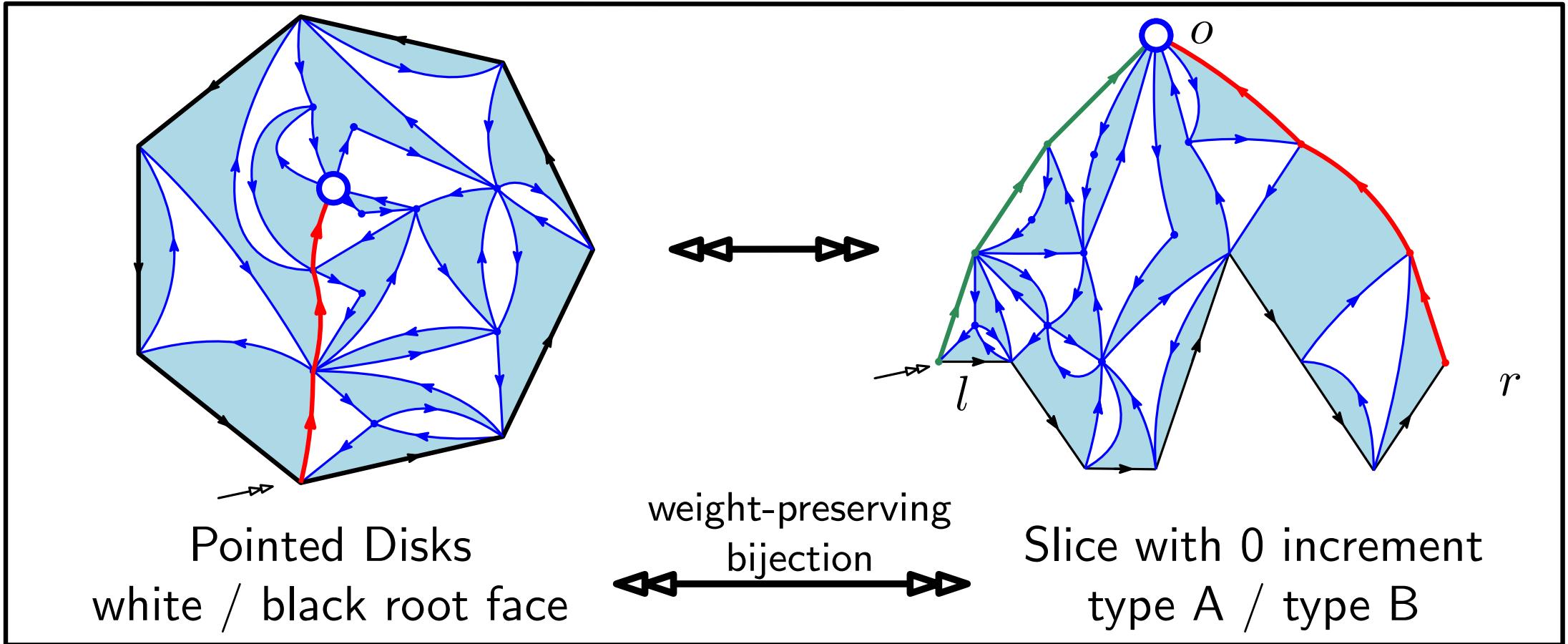


$p$ -tuple of type A/B **elementary** slices  
s.t. sum of increment =  $k$

The generating series of slices with base of length  $p$  and increment  $k$  is given by:

$$[z^{-k}]x(z)^p \text{ for type A,} \quad \text{and} \quad [z^k]y(z)^p \text{ for type B.}$$

# Coming back to pointed disks

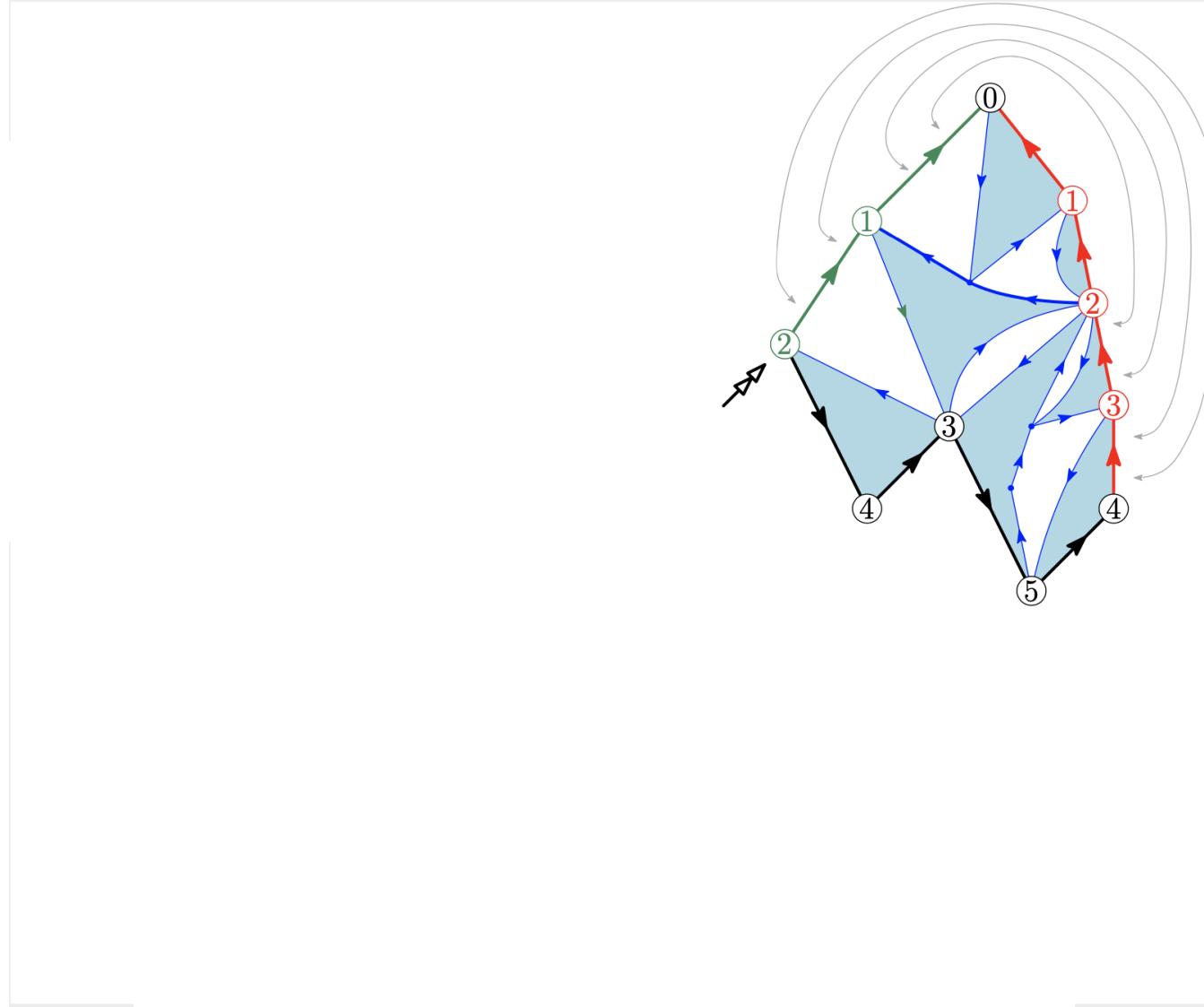


$F_p^\circ, F_p^\bullet :=$  generating series of hypermaps with a monochromatic white (resp. black) boundary of degree  $p$ .

We have:

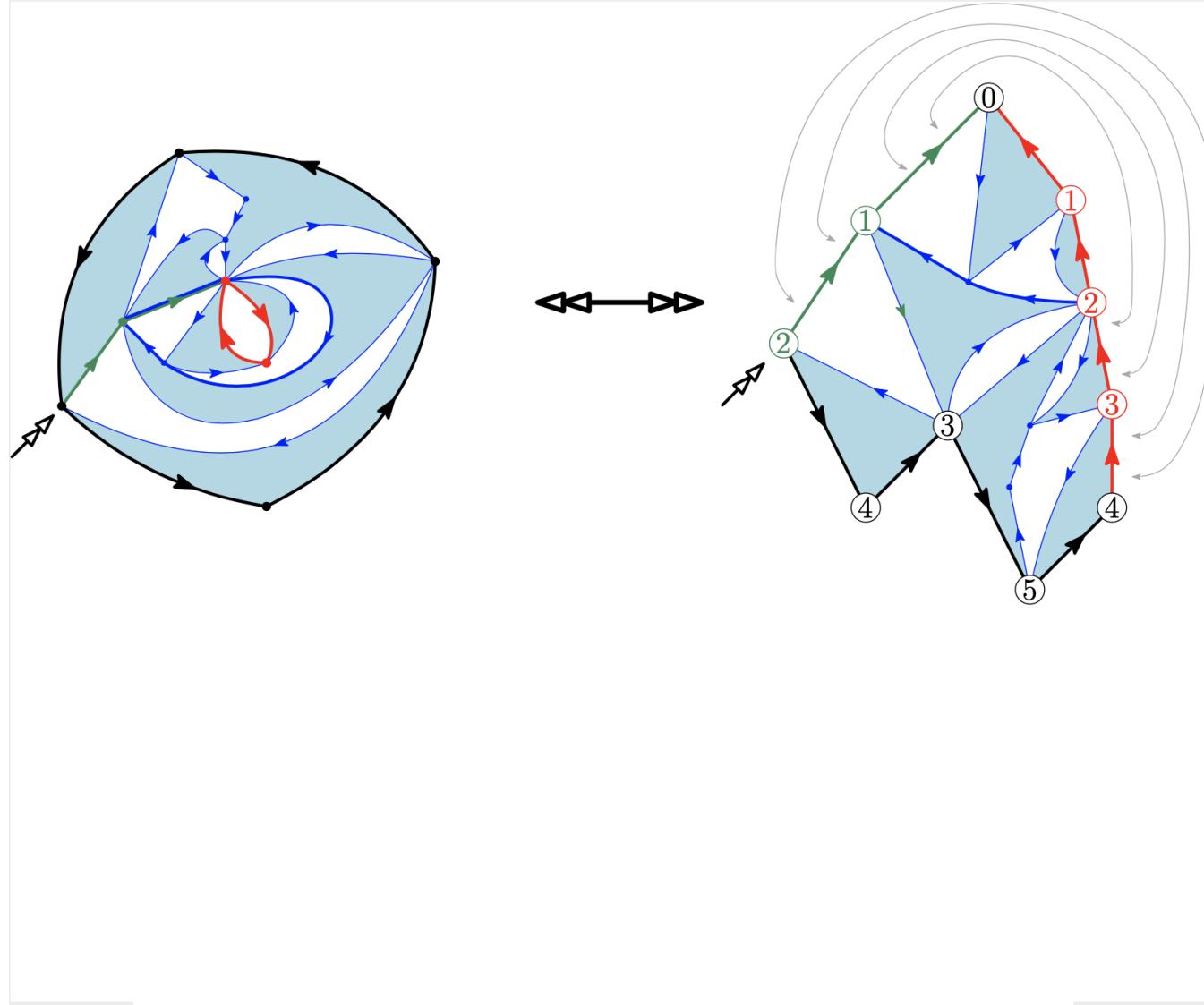
$$\frac{d}{dt} F_p^\circ = [z^0] x(z)^p, \quad \text{resp. } \frac{d}{dt} F_p^\bullet = [z^0] y(z)^p.$$

## Two boundaries: trumpets and slices with $\text{increment} \neq 0$



Slice with  
 $\text{increment} > 0$ .

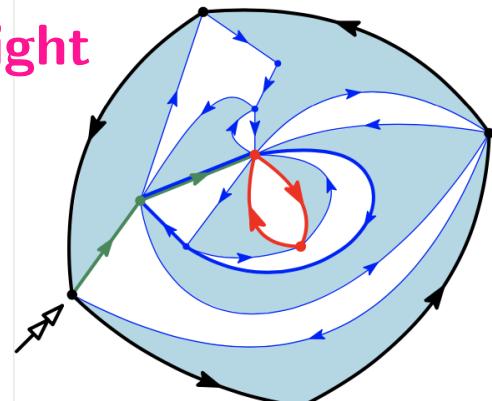
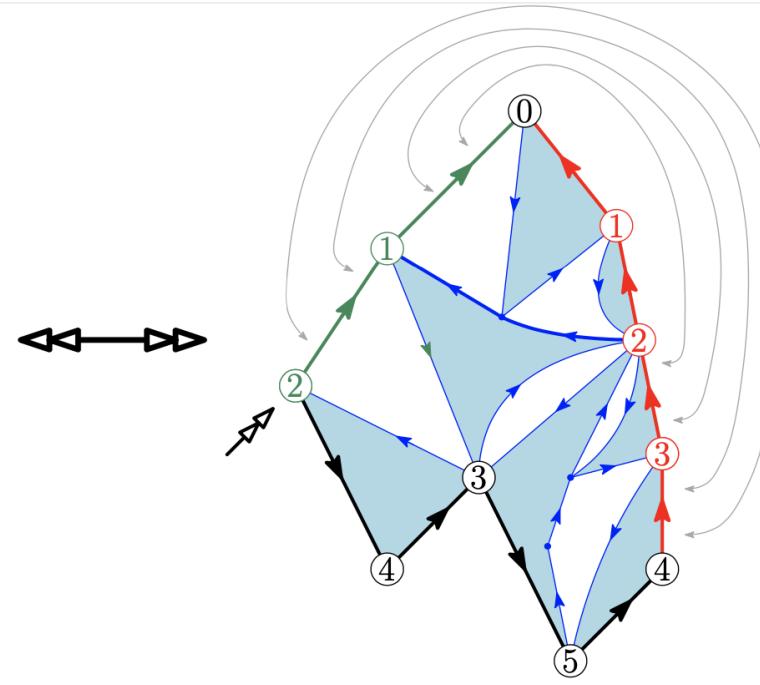
# Two boundaries: trumpets and slices with $\text{increment} \neq 0$



# Two boundaries: trumpets and slices with increment $\neq 0$

**Cornet** : Hypermap with 2 monochromatic boundaries: one rooted and one **strictly tight**

:= The boundary of the tight face is the unique shortest separating cycle between both boundaries.

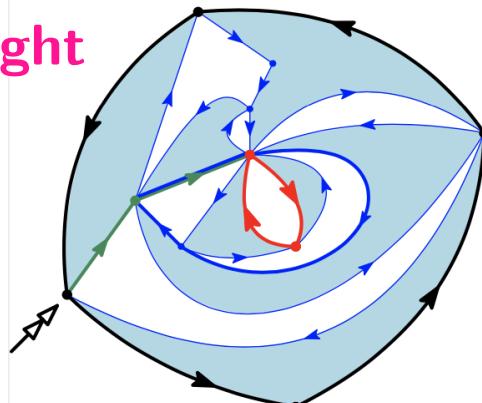


Slice with increment  $> 0$ .

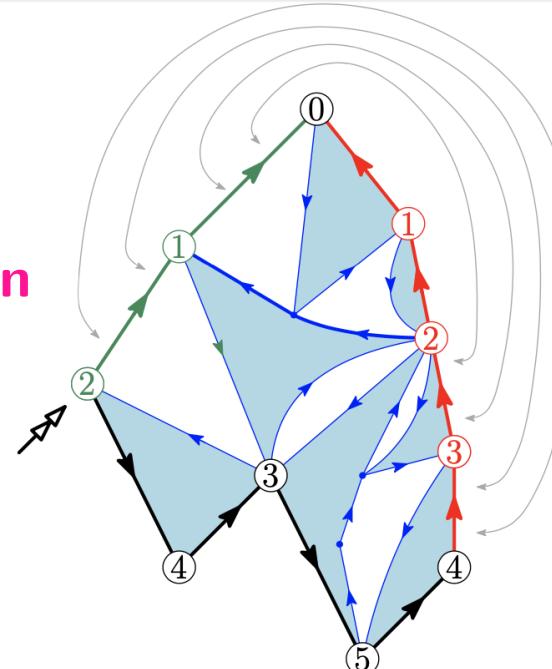
# Two boundaries: trumpets and slices with increment $\neq 0$

**Cornet** : Hypermap with 2 monochromatic boundaries: one rooted and one **strictly tight**

:= The boundary of the tight face is the unique shortest separating cycle between both boundaries.



Bijection

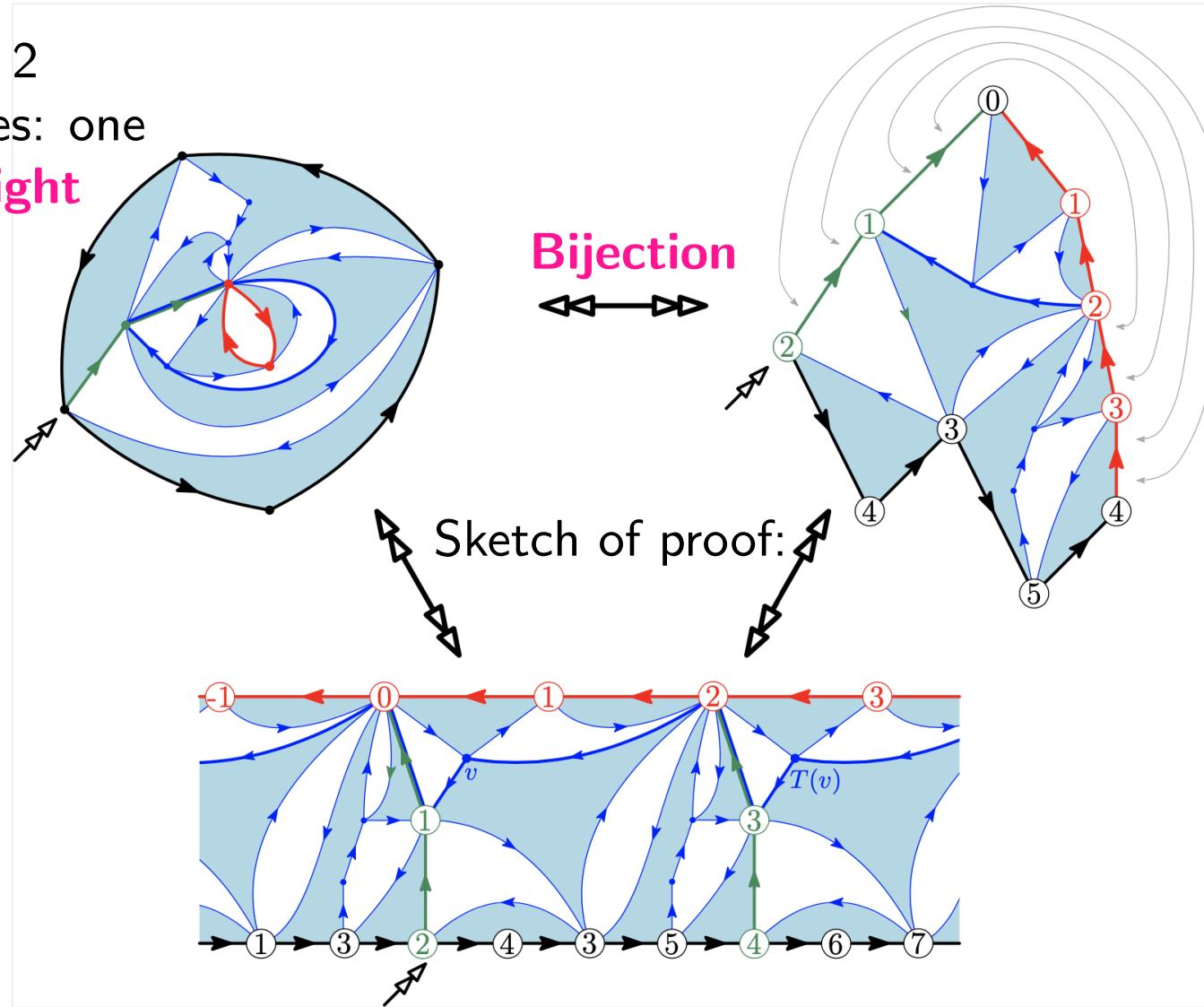


Slice with increment  $> 0$ .

# Two boundaries: trumpets and slices with increment $\neq 0$

**Cornet** : Hypermap with 2 monochromatic boundaries: one rooted and one **strictly tight**

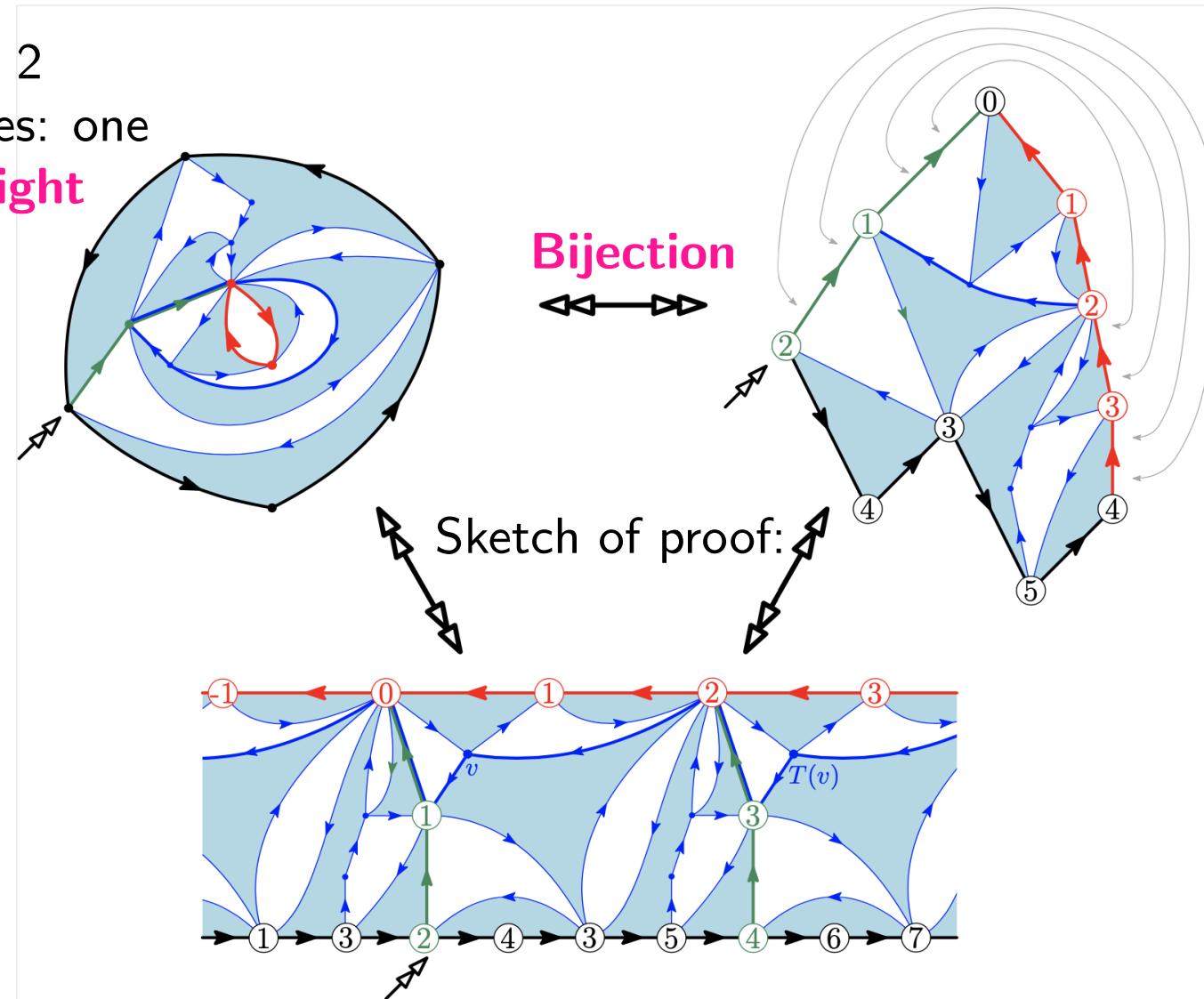
$\therefore$  The boundary of the tight face is the unique shortest separating cycle between both boundaries.



# Two boundaries: trumpets and slices with increment $\neq 0$

**Cornet** : Hypermap with 2 monochromatic boundaries: one rooted and one **strictly tight**

$\therefore$  The boundary of the tight face is the unique shortest separating cycle between both boundaries.



Remark: Similar result for slices of type *B* and **trumpets** with a **tight face**.

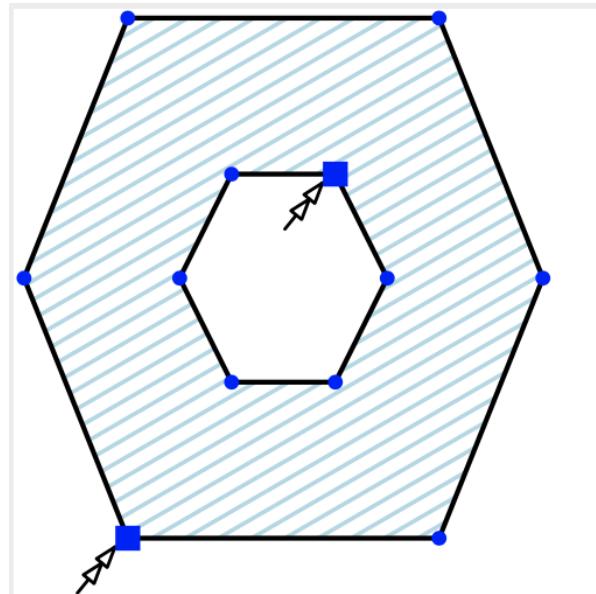


$\therefore$  The boundary of the tight face is among the shortest separating cycle between both boundaries.

Slice with increment  $> 0$ .

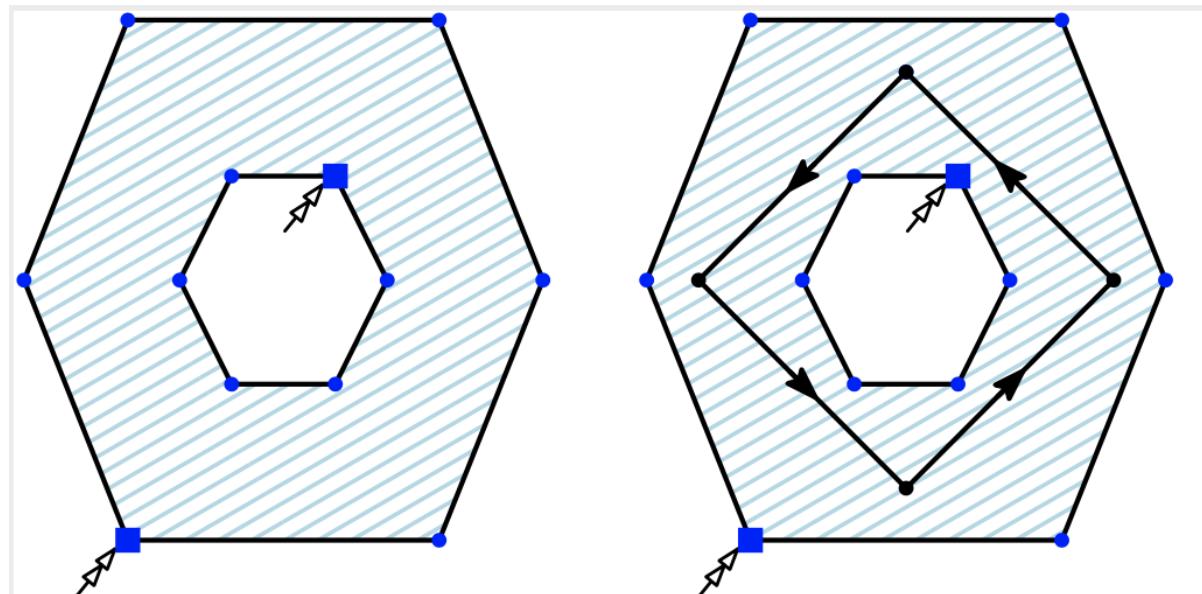
## Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the “inner-most” shortest separating cycle: we get an ordered pair trumpet/cornet.



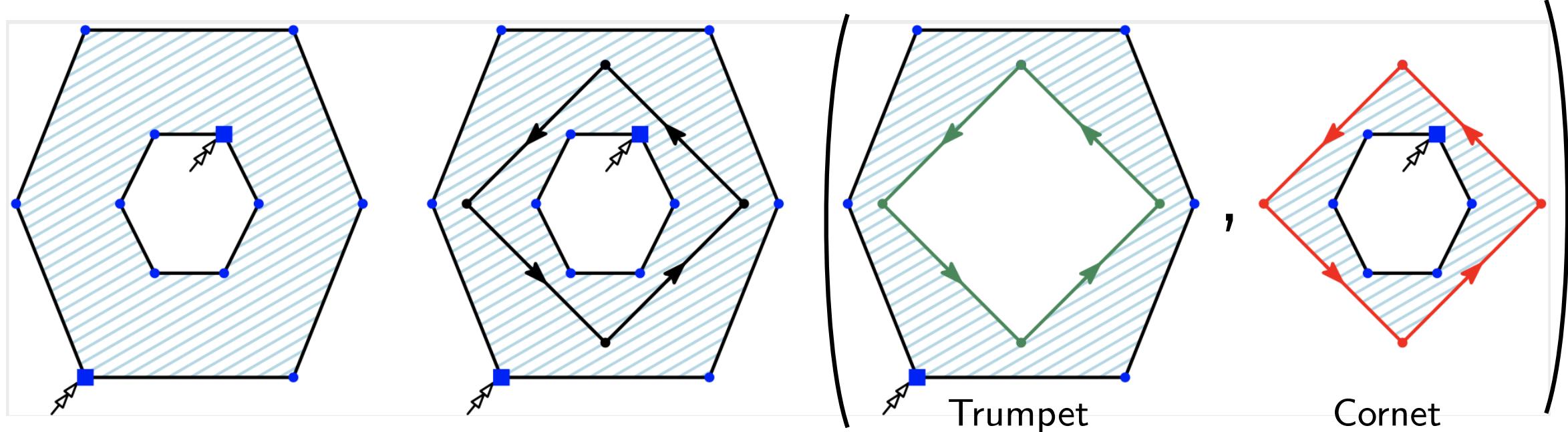
## Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the “inner-most” shortest separating cycle: we get an ordered pair trumpet/cornet.



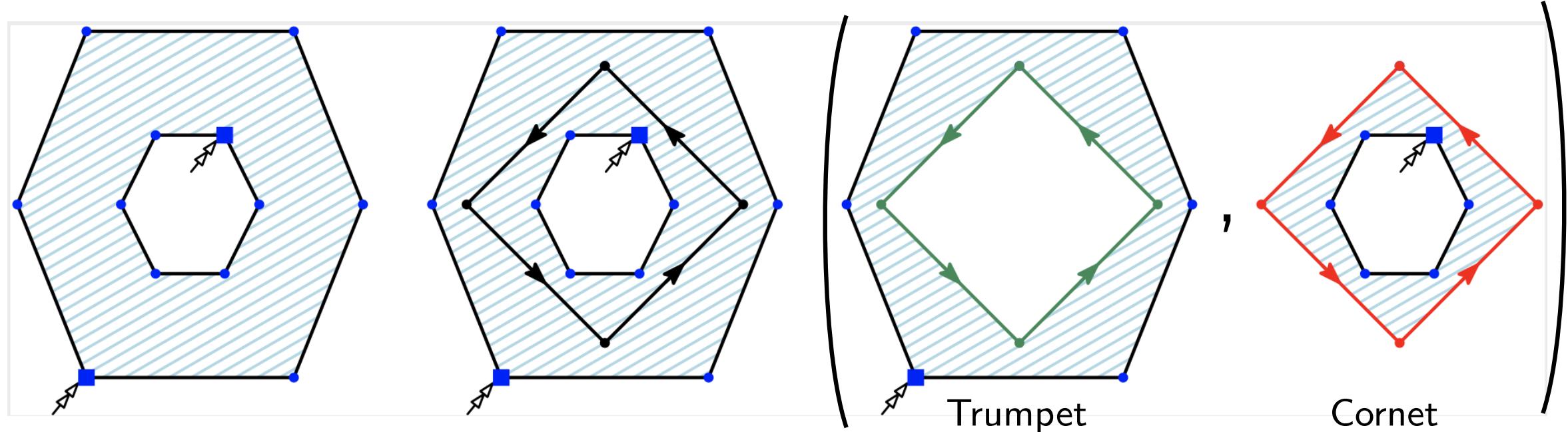
## Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the “inner-most” shortest separating cycle: we get an ordered pair trumpet/cornet.



# Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the “inner-most” shortest separating cycle: we get an ordered pair trumpet/cornet.



The generating series of hypermaps with two monochromatic boundaries are given by:

$$F_{p,q}^{\circ\circ} = \sum_{h \geq 1} h \left( [z^h] x(z)^p \right) \left( [z^{-h}] x(z)^q \right), \quad F_{p,q}^{\circ\bullet} = \sum_{h \geq 1} h \left( [z^h] x(z)^p \right) \left( [z^{-h}] y(z)^q \right),$$

$$F_{p,q}^{\bullet\bullet} = \sum_{h \geq 1} h \left( [z^h] y(z)^p \right) \left( [z^{-h}] y(z)^q \right), \quad F_{p,q}^{\bullet\circ} = \sum_{h \geq 1} h \left( [z^h] y(z)^p \right) \left( [z^{-h}] x(z)^q \right).$$

## Rooted maps via cylinders

$F_p^\circ, F_p^\bullet :=$  generating series of hypermaps with a monochromatic white (resp. black) boundary of degree  $p$ . We established that:

$$\frac{d}{dt} F_p^\circ = [z^0] x(z)^p, \quad \text{resp. } \frac{d}{dt} F_p^\bullet = [z^0] y(z)^p.$$

⇒ It “suffices” to integrate this expression to get the generating series of rooted maps.

## Rooted maps via cylinders

$F_p^\circ, F_p^\bullet :=$  generating series of hypermaps with a monochromatic white (resp. black) boundary of degree  $p$ . We established that:

$$\frac{d}{dt} F_p^\circ = [z^0] x(z)^p, \quad \text{resp. } \frac{d}{dt} F_p^\bullet = [z^0] y(z)^p.$$

⇒ It “suffices” to integrate this expression to get the generating series of rooted maps.

But, integration does not preserve algebraicity a priori ...

# Rooted maps via cylinders

$F_p^\circ, F_p^\bullet :=$  generating series of hypermaps with a monochromatic white (resp. black) boundary of degree  $p$ . We established that:

$$\frac{d}{dt} F_p^\circ = [z^0] x(z)^p, \quad \text{resp. } \frac{d}{dt} F_p^\bullet = [z^0] y(z)^p.$$

⇒ It “suffices” to integrate this expression to get the generating series of rooted maps.

But, integration does not preserve algebraicity a priori ...

And, moreover, [Eynard 2016] tells us that the series

$$W^\circ(x) := \sum_{p \geq 1} \frac{F_p^\circ}{x^{p+1}} \quad \text{and} \quad W^\bullet(y) := \sum_{p \geq 1} \frac{F_p^\bullet}{y^{p+1}}$$

admit the following rational parametrization in terms of  $x(z)$  and  $y(z)$ :

$$Y(x(z)) = y(z) \quad \text{and} \quad X(y(z)) = x(z),$$

$$\text{with } Y(x) := W^\circ(x) + \sum_{d \geq 1} t_d^\circ x^{d-1} \text{ and } X(y) := W^\bullet(y) + \sum_{d \geq 1} t_d^\bullet y^{d-1}$$

## Rooted maps via cylinders

$F_p^\circ, F_p^\bullet :=$  generating series of hypermaps with a monochromatic white (resp. black) boundary of degree  $p$ . We established that:

$$\frac{d}{dt} F_p^\circ = [z^0] x(z)^p, \quad \text{resp. } \frac{d}{dt} F_p^\bullet = [z^0] y(z)^p.$$

⇒ It “suffices” to integrate this expression to get the generating series of rooted maps.

But, integration does not preserve algebraicity a priori ...

And, moreover, [Eynard 2016] tells us that the series

$$W^\circ(x) := \sum_{p \geq 1} \frac{F_p^\circ}{x^{p+1}} \quad \text{and} \quad W^\bullet(y) := \sum_{p \geq 1} \frac{F_p^\bullet}{y^{p+1}}$$

admit the following rational parametrization in terms of  $x(z)$  and  $y(z)$ :

$$Y(x(z)) = y(z) \quad \text{and} \quad X(y(z)) = x(z),$$

$$\text{with } Y(x) := W^\circ(x) + \sum_{d \geq 1} t_d^\circ x^{d-1} \text{ and } X(y) := W^\bullet(y) + \sum_{d \geq 1} t_d^\bullet y^{d-1}$$

So let's do something else than integration !

i.e. let us try to give a combinatorial sense of Eynard's expressions...

# Rooted maps via cylinders

**Proposition:** 
$$F_p^{\circ} = \frac{1}{p+1} \left( F_{p+1,1}^{\circ\bullet} - \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} \right)$$

# Rooted maps via cylinders

**Proposition:** 
$$F_p^{\circ} = \frac{1}{p+1} \left( F_{p+1,1}^{\circ\bullet} - \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} \right)$$

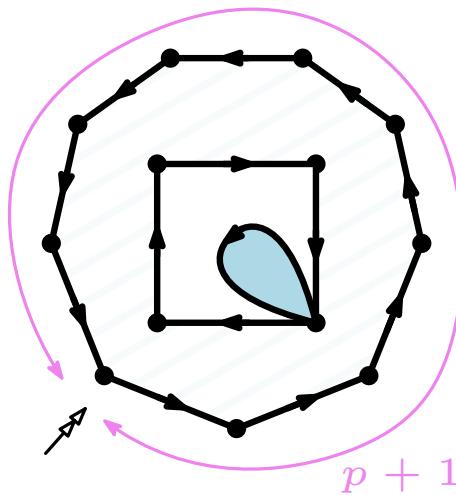
In fact we prove: 
$$F_{p+1,1}^{\circ\bullet} = \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} + (p+1)F_p^{\circ}.$$

# Rooted maps via cylinders

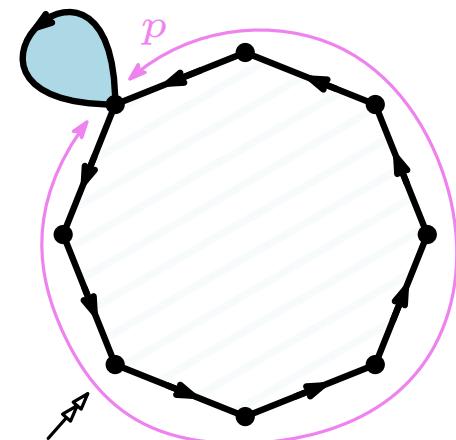
**Proposition:**  $F_p^{\circ} = \frac{1}{p+1} \left( F_{p+1,1}^{\circ\bullet} - \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} \right)$

In fact we prove:  $F_{p+1,1}^{\circ\bullet} = \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} + (p+1)F_p^{\circ}$ .

Element enumerated by  $F_{p+1,1}^{\circ\bullet}$  is either



or

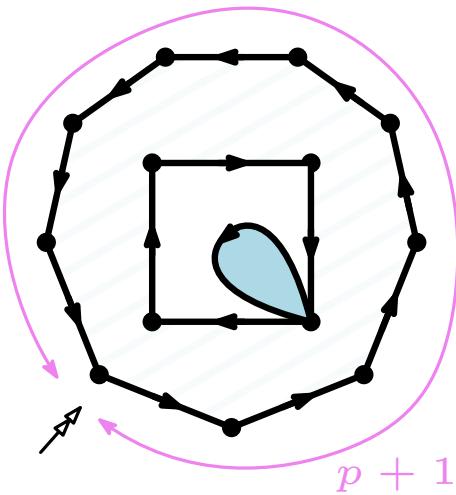


# Rooted maps via cylinders

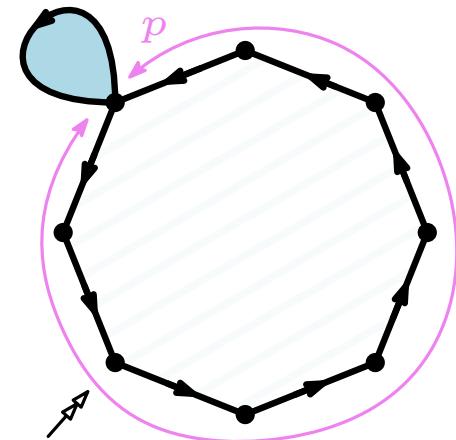
**Proposition:**  $F_p^{\circ} = \frac{1}{p+1} \left( F_{p+1,1}^{\circ\bullet} - \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} \right)$

In fact we prove:  $F_{p+1,1}^{\circ\bullet} = \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} + (p+1)F_p^{\circ}$ .

Element enumerated by  $F_{p+1,1}^{\circ\bullet}$  is either



or



$p+1$  possible choices  
to attach the loop

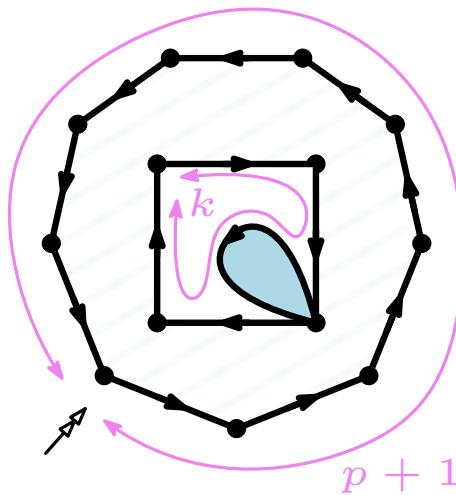
$$\Rightarrow (p+1)F_p^{\circ}$$

# Rooted maps via cylinders

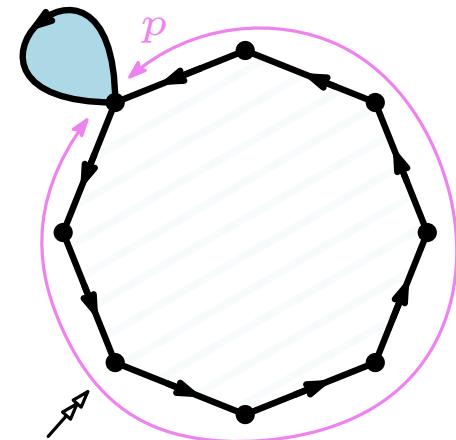
**Proposition:**  $F_p^{\circ} = \frac{1}{p+1} \left( F_{p+1,1}^{\circ\bullet} - \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} \right)$

In fact we prove:  $F_{p+1,1}^{\circ\bullet} = \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} + (p+1)F_p^{\circ}$ .

Element enumerated by  $F_{p+1,1}^{\circ\bullet}$  is either



or



$p+1$  possible choices  
to attach the loop

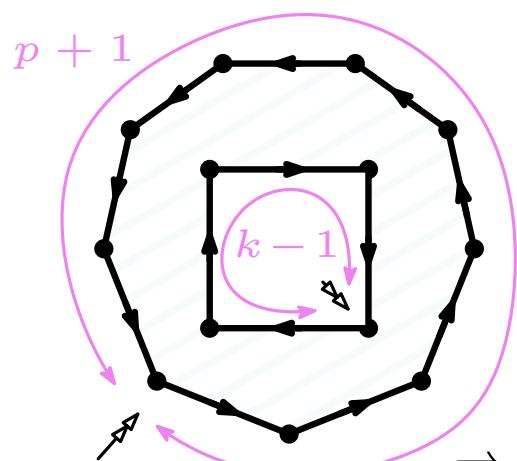
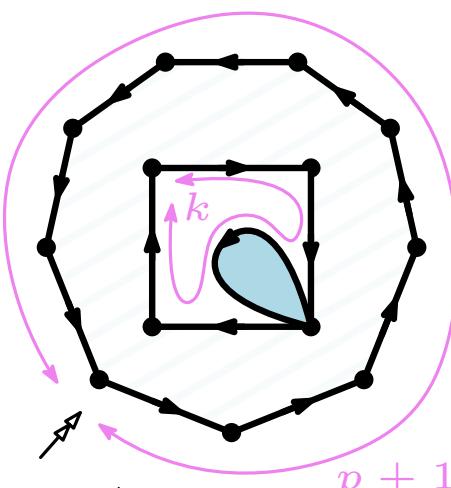
$$\Rightarrow (p+1)F_p^{\circ}$$

# Rooted maps via cylinders

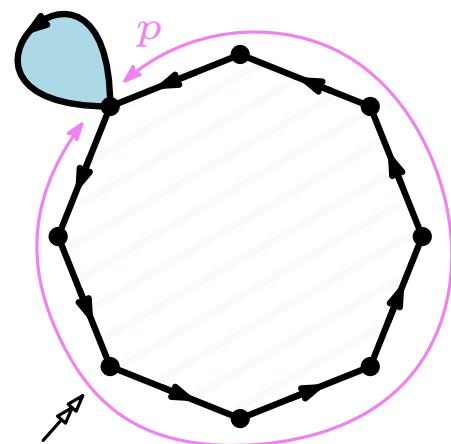
**Proposition:**  $F_p^{\circ} = \frac{1}{p+1} \left( F_{p+1,1}^{\circ\bullet} - \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} \right)$

In fact we prove:  $F_{p+1,1}^{\circ\bullet} = \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ} + (p+1)F_p^{\circ}$ .

Element enumerated by  $F_{p+1,1}^{\circ\bullet}$  is either



or



$p+1$  possible choices  
to attach the loop

$$\Rightarrow (p+1)F_p^{\circ}$$

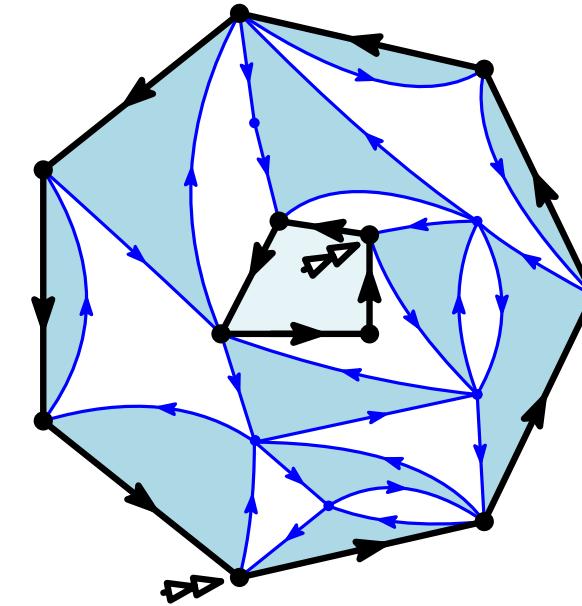
$$\Rightarrow \sum_{k \geq 2} t_k^{\circ} F_{p+1,k-1}^{\circ\circ}$$

# Hypermaps with boundaries

A map **with boundaries** is a map where some faces are marked (and rooted). Other faces are called **inner faces**.

- Hypermap **with monochromatic boundaries**:

All faces (inner and boundaries) are colored.  
↔ The contour of all faces are directed cycles.

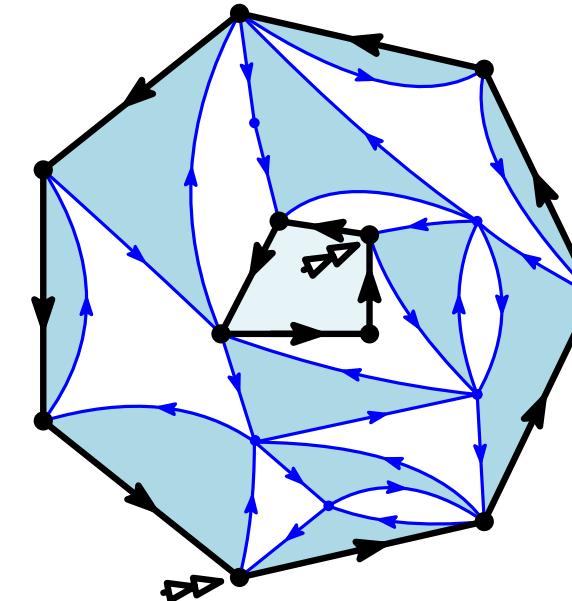


# Hypermaps with boundaries

A map **with boundaries** is a map where some faces are marked (and rooted). Other faces are called **inner faces**.

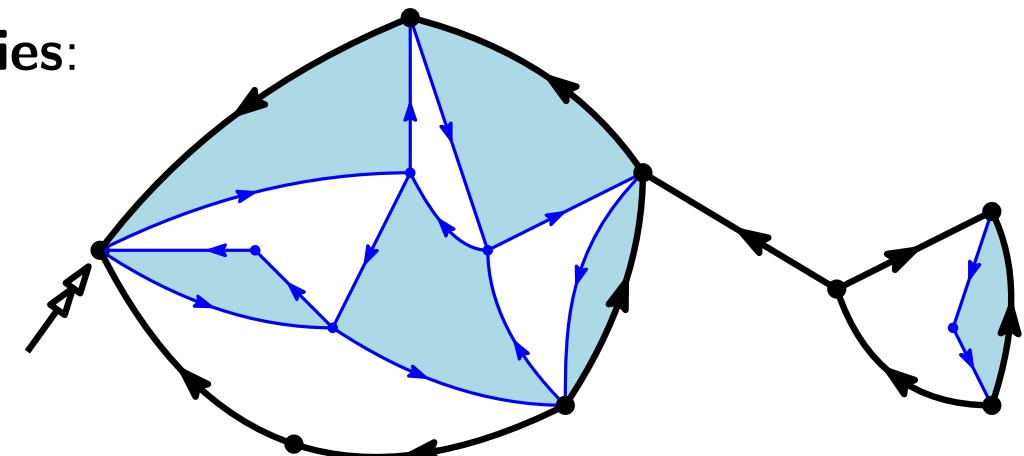
- **Hypermap with monochromatic boundaries:**

All faces (inner and boundaries) are colored.  
↔ The contour of all faces are directed cycles.



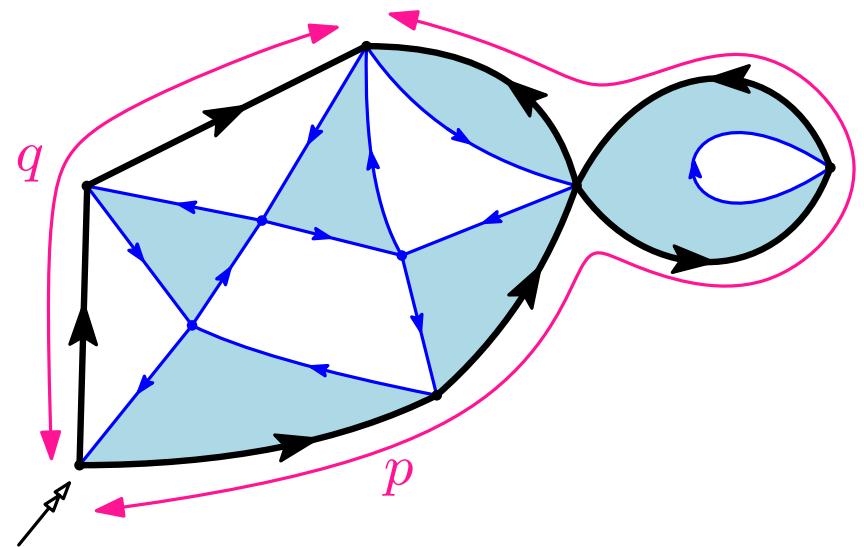
- **Hypermap with non-monochromatic boundaries:**

Only the contour of the inner faces are required to be oriented.



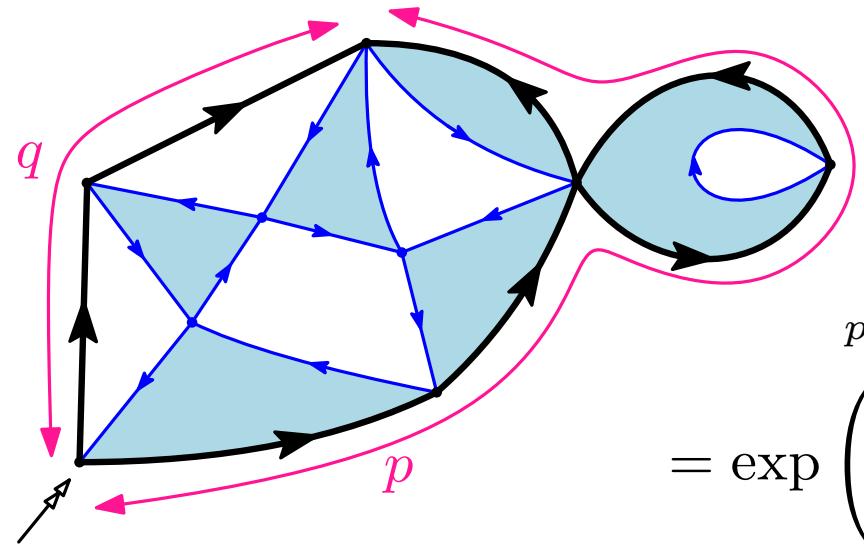
# One more result

Generating series of hypermaps with a **Dobrushin boundary condition**:



# One more result

Generating series of hypermaps with a **Dobrushin boundary condition**:



$$\begin{aligned} & \sum_{p,q \geq 0} \frac{F_{p,q}^{\bullet}}{x^{p+1} y^{q+1}} \\ &= \exp \left( \sum_{h \in \mathbb{Z}} h \left( [z^h] \ln \left( 1 - \frac{x(z)}{x} \right) \right) \left( [z^{-h}] \ln \left( 1 - \frac{y(z)}{y} \right) \right) \right) - 1 \end{aligned}$$

Again, the proof relies on some “trick” to interpret Dobrushin boundary condition as some special families of cylinders.

# Conclusion

We gave **bijective derivation** of enumeration results for hypermaps with one or two boundaries.

- This new proof of known enumerative results, allows us to encode some (oriented) metric properties.
- This derivation was applied to constellations with some additional statistics in [Bonzom, Chapuy, Charbonnier, Garcia-Failde 24], to prove topological recursion for colored constellations.

# Conclusion

We gave **bijective derivation** of enumeration results for hypermaps with one or two boundaries.

- This new proof of known enumerative results, allows us to encode some (oriented) metric properties.
- This derivation was applied to constellations with some additional statistics in [\[Bonzom, Chapuy, Charbonnier, Garcia-Failde 24\]](#), to prove topological recursion for colored constellations.

But even more mysterious formulas are available – for hypermaps with more boundaries or with any boundary conditions – which still lack a bijective derivation.

# Conclusion

We gave **bijective derivation** of enumeration results for hypermaps with one or two boundaries.

- This new proof of known enumerative results, allows us to encode some (oriented) metric properties.
- This derivation was applied to constellations with some additional statistics in [Bonzom, Chapuy, Charbonnier, Garcia-Failde 24], to prove topological recursion for colored constellations.

But even more mysterious formulas are available – for hypermaps with more boundaries or with any boundary conditions – which still lack a bijective derivation.

We make room for the younger generation:

- Thomas Lejeune extended our results to hypermaps with mixed boundaries, [Bouttier, Eynard, Lejeune, 26+], [Lejeune, 26+].
- Nicolas Tokka managed to reinterpret the Bousquet-Mélou – Schaeffer's bijection, and to extend it to obtain a new derivation of the pointed disk and cylinder formulas, [A., Ménard, Tokka, 25]

# Conclusion

We gave **bijective derivation** of enumeration results for hypermaps with one or two boundaries.

- This new proof of known enumerative results, allows us to encode some (oriented) metric properties.
- This derivation was applied to constellations with some additional statistics in [\[Bonzom, Chapuy, Charbonnier, Garcia-Failde 24\]](#), to prove topological recursion for colored constellations.

But even more mysterious formulas are available – for hypermaps with more boundaries or with any boundary conditions – which still lack a bijective derivation.

We make room for the younger generation:

- Thomas Lejeune extended our results to hypermaps with mixed boundaries, [\[Bouttier, Eynard, Lejeune, 26+\]](#), [\[Lejeune, 26+\]](#).
- Nicolas Tokka managed to reinterpret the Bousquet-Mélou – Schaeffer's bijection, and to extend it to obtain a new derivation of the pointed disk and cylinder formulas, [\[A., Ménard, Tokka, 25\]](#)

