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An hypermap is a planar map in which the

faces can be properly bicolored.

Why “hypermap” ?

— Extend the notion of hypergraphs to maps.
£ — Blue faces can been as hyper-edges which
connect several vertices.

j(u,v) = 2

Edges of an hypermap can be canonically oriented, by requiring that the contour of each
face is a directed cycle (the color of the face determines the orientation of the cycle).

Oriented (pseudo)-distance on the hypermap: oriented graph distance.
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Hypermaps generalize maps, also additional motivations from theoretical physics:

e 2-matrix models ([ltzykson-Zuber 1980], [Eynard et al. 2000’s])
¢ Ising model on maps ([Kazakov 1986])
e Integrability in the context of the 2-Toda hierarchy

But also in combinatorics:

e Bijections with blossoming trees, [Bousquet-Mélou - Schaeffer 2002]
e Bijections with mobiles, [Bouttier - Di Francesco - Guitter 2004]
e Unifying bijections with girth constraints [Bernardi - Fusy 2020]

Goal of this talk: Obtain some bijective proofs for the enumerative formulas of
hypermaps obtained previously by algebraic manipulations [Eynard’s book 2016].

To do that, we extend the slice decomposition of [Bouttier-Guitter| to
hypermaps.
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Hypermaps with boundaries: enumeration

A map with boundaries is a map where some faces are marked (and rooted).
Other faces are called inner faces.

e Hypermap with monochromatic boundaries:

All faces (inner and boundaries) are colored.
< The contour of all faces are directed cycles. Y

The weight of an hypermap m is defined by:

w(m) - t|vertices of m| H t?ieg(f) H tc.ieg(f)
feFS fers

inn inn

where ¢, t3, t5, ..., t1, t5 are formal variables.
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e the left boundary from [ to o is a geodesic (green edges)
e the right boundary from r to o is the unique geodesic (red edges),

e the base (black edges) is either oriented from [ to r (="type A")
or from r to [l (="type B"),

e and the left and the right boundaries intersect only at o.



First example slice decomposition on pointed disks

A (hyper)-slice is an hypermap with a boundary and 3 marked corners [,  and o such that:
e the left boundary from [ to o is a geodesic (green edges)
e the right boundary from r to o is the unique geodesic (red edges),

e the base (black edges) is either oriented from [ to r (="type A")
or from r to [l (="type B"),

e and the left and the right boundaries intersect only at o.



First example slice decomposition on pointed disks

A (hyper)-slice is an hypermap with a boundary and 3 marked corners [,  and o such that:
e the left boundary from [ to o is a geodesic (green edges)
e the right boundary from r to o is the unique geodesic (red edges),

e the base (black edges) is either oriented from [ to r (="type A")
or from r to [l (="type B"),

e and the left and the right boundaries intersect only at o.

The increment of a A-slice (resp. B-slice) is a difference between the labels of r and of [
(resp. [ and 7).



First example slice decomposition on pointed disks

_ _ weight-preserving _ _ _
Pointed Disks bijection Slice with 0 increment
<KD

white / black root face type A / type B

The increment of a A-slice (resp. B-slice) is a difference between the labels of r and of [
(resp. [ and 7).



First example slice decomposition on pointed disks

_ _ weight-preserving _ _ _
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The increment of a A-slice (resp. B-slice) is a difference between the labels of r and of [
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Why does this help ? Decomposition of slices

Slices can be further decomposed into “elementary slices”:

weight-preserving

Type A / B slice with bijection p—tuple of type A/B elementary slices
L <f— >

base of length p and increment k s.t. sum of increment = k

Elementary slice: slice with a base of length 1.
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type A type A
increment = — 1 increment =
[ ©) l=o0
# T - 7 o
type A N type B
increment = 2 5 T increment = — 1
For k € Z, ay,br := generating series of elementary slices of type A/B and increment k.

First properties: o ar =by =0 for k < —1.
® b_l =1

We combine all these quantities into two Laurent series:

Main result:

x(z) = Z apz ", y(z) := Z brz". | All “natural” generating series of hypermaps
k>—1 k>—1 can be expressed in terms of x(z) and y(z)

= “spectral curve”.
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The generating series of elementary slices are uniquely determined by the following
recursive system of equations:

ar = t0p _1+ Zt;[zk]y(z)d_l for k > —1
d>1

b1 =1 and by =) tglz""z(2)*"" fork >0

d>1

— This system is algebraic when the degree of the faces are assumed to be bounded.

— Same system of equations as [Bousquet-Mélou, Schaeffer 02] + the system of [Bouttier,
Di Francesco, Guitter 04] can be recovered using an additional combinatorial construction.
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Elementary slices for Eulerian triangulations

The generating series of elementary slices are uniquely determined by the following
recursive system of equations:

ar = t0x1+ Zt:l[zk]y(z)d_l for k <1
d>1

b_1 =1 and by :Ztﬁi[zk]aj(z)d_l for k>0
d>1

Eulerian triangulations:
t3 =t3 =1and ty, =t; =0 for k # 3:

Along an edge labels either decrease by 1 or increase by 2:

:>ak,bk:()ifk7é—1,2

( 1
r(z) =a_1z + p
We get the following system of equations: < y(z) = 1 + a2, 22
z
a_1 =t+2a*,

So that a_1 =t + 2t + 8t° 4 40" + 224¢> 4 1344t° + 8448t" 4 o(t")



Generating series of slices

weight-preserving
Type A / B slice with bijection p—tuple of type A/B elementary slices
. M .
base of length p and increment k s.t. sum of increment = k

The generating series of slices with base of length p and increment k is given by:

(27 Fx(2)P for type A, and [2*ly(2)P for type B.




Coming back to pointed disks

- weight-preserving

Pointed Disks bijection Slice with 0 increment
white / black root face type A / type B

F;, F, = generating series of hypermaps with a monochromatic white (resp. black)
boundary of degree p.

We have: p
EF; = [2°]z(2)?, resp. —F, = [z
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Cornet : Hypermap with 2 _
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Two boundaries: trumpets and slices with increment # 0

Slice with

Cornet : Hypermap with 2 _
Increment > 0.

monochromatic boundaries: one
rooted and one strictly tight

:= The boundary of the tight face
is the unique shortest separating
cycle between both boundaries.

e
o= T —— gﬂ

T

:= The boundary of the tight face is among
the shortest separating cycle between both
boundaries.
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The generating series of hypermaps with two monochromatic boundaries are given by:
Foo=> b (["2(2)7) ("2(2)7) B =Y b (")) (17" w(2)7).
Fot =S b (")) (E7"w=)0) B =0k (["w2)?) (72 (2)7)
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Rooted maps via cylinders

F;, F) := generating series of hypermaps with a monochromatic white (resp. black)
boundary of degree p. We established that:

d o __ 1.0 D i e .0 P
thp = [z"]x(2)", resp. thp = [z"]y(2)".

= It “suffices” to integrate this expression to get the generating series of rooted maps.

But, integration does not preserve algebraicity a priori ...

And, moreover, [Eynard 2016]| tells us that the series

o Fy o Fy
VV'(x)IZ:ZE:;xpi1 and VV‘(y):::EE:/ypil

p>1 p>1

admit the following rational parametrization in terms of x(z) and y(z):

V(@) =y(z) and  X(y(2) = a(2),
with Y(z) := W"(z) + >4, taz®~! and X (y) := W*(y) + 2 a1 toy

So let's do something else than integration !
I.e. let us try to give a combinatorial sense of Eynard’s expressions...
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Rooted maps via cylinders

L. o 1
PfOpOSItIO". Fp = m p-|—1 1 — Ztk p-|—1 k—1
k>2
In fact we prove: F¥i1= Ztk vik_1+ (p+1)F,.
k>2
Element enumerated by F}° | is either or
v v
/ p + 1 possible choices
to attach the loop

= (P+1)F)

= Zk>2tk p—l—lk 1
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Hypermaps with boundaries

A map with boundaries is a map where some faces are marked (and rooted).
Other faces are called inner faces.

e Hypermap with monochromatic boundaries:

All faces (inner and boundaries) are colored.
< The contour of all faces are directed cycles.

e Hypermap with non-monochromatic boundaries:

Only the contour of the inner faces are
required to be oriented.

A
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One more result

Generating series of hypermaps with a Dobrushin boundary condition:

Again, the proof relies on some “trick” to interpret Dobrushin boundary
condition as some special families of cylinders.
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recursion for colored constellations.
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