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Hypermaps

An hypermap is a planar map in which the
faces can be properly bicolored.

Why “hypermap” ?
→ Extend the notion of hypergraphs to maps.
→ Blue faces can been as hyper-edges which
connect several vertices.

Edges of an hypermap can be canonically oriented, by requiring that the contour of each
face is a directed cycle (the color of the face determines the orientation of the cycle).

Oriented (pseudo)-distance on the hypermap: oriented graph distance.

u

v

−→
d (u, v) = 2
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Motivations and existing litterature

Hypermaps generalize maps, also additional motivations from theoretical physics:

But also in combinatorics:

Goal of this talk: Obtain some bijective proofs for the enumerative formulas of
hypermaps obtained previously by algebraic manipulations [Eynard’s book 2016].

• 2-matrix models ([Itzykson-Zuber 1980], [Eynard et al. 2000’s])

• Ising model on maps ([Kazakov 1986])

• Integrability in the context of the 2-Toda hierarchy

• Bijections with blossoming trees, [Bousquet-Mélou - Schaeffer 2002]

• Bijections with mobiles, [Bouttier - Di Francesco - Guitter 2004]

• Unifying bijections with girth constraints [Bernardi - Fusy 2020]

To do that, we extend the slice decomposition of [Bouttier-Guitter] to
hypermaps.
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Hypermaps with boundaries: enumeration

A map with boundaries is a map where some faces are marked (and rooted).
Other faces are called inner faces.

• Hypermap with monochromatic boundaries:

All faces (inner and boundaries) are colored.
⇔ The contour of all faces are directed cycles.

w(m) := t|vertices of m|
∏

f∈F◦
inn

t◦deg(f)
∏

f∈F•
inn

t•deg(f)

The weight of an hypermap m is defined by:

where t, t•1, t•2, . . . , t◦1, t◦2 are formal variables.
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Slice with 0 increment
type A / type B

weight-preserving
bijection

The increment of a A-slice (resp. B-slice) is a difference between the labels of r and of l
(resp. l and r).

no weight given to the vertices incident to
the right boundary of a slice.
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Why does this help ? Decomposition of slices

Slices can be further decomposed into “elementary slices”:

Elementary slice: slice with a base of length 1.

Type A / B slice with
base of length p and increment k

p−tuple of type A/B elementary slices
s.t. sum of increment = k

weight-preserving
bijection
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For k ∈ Z, ak, bk := generating series of elementary slices of type A/B and increment k.

We combine all these quantities into two Laurent series:

x(z) :=
∑
k≥−1

akz
−k, y(z) :=

∑
k≥−1

bkz
k.

Main result:
All “natural” generating series of hypermaps
can be expressed in terms of x(z) and y(z)
= “spectral curve”.
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Why does this help ???? Decomposition of elementary slices

×t◦5

The generating series of elementary slices are uniquely determined by the following
recursive system of equations:

ak = tδk,−1+
∑
d≥1

t•d[z
k]y(z)d−1 for k ≥ −1

b−1 = 1 and bk =
∑
d≥1

t◦d[z
−k]x(z)d−1 for k ≥ 0
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Why does this help ???? Decomposition of elementary slices

×t◦5

→ This system is algebraic when the degree of the faces are assumed to be bounded.

The generating series of elementary slices are uniquely determined by the following
recursive system of equations:

ak = tδk,−1+
∑
d≥1

t•d[z
k]y(z)d−1 for k ≥ −1

b−1 = 1 and bk =
∑
d≥1

t◦d[z
−k]x(z)d−1 for k ≥ 0

→ Same system of equations as [Bousquet-Mélou, Schaeffer 02] + the system of [Bouttier,
Di Francesco, Guitter 04] can be recovered using an additional combinatorial construction.
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Elementary slices for Eulerian triangulations

The generating series of elementary slices are uniquely determined by the following
recursive system of equations:

ak = tδk,1+
∑
d≥1

t•d[z
k]y(z)d−1 for k ≤ 1

b−1 = 1 and bk =
∑
d≥1

t◦d[z
k]x(z)d−1 for k ≥ 0

Eulerian triangulations:
t◦3 = t•3 = 1 and t◦k = t•k = 0 for k 6= 3:

⇒ ak, bk = 0 if k 6= −1, 2

Along an edge labels either decrease by 1 or increase by 2:



Elementary slices for Eulerian triangulations

The generating series of elementary slices are uniquely determined by the following
recursive system of equations:

ak = tδk,1+
∑
d≥1

t•d[z
k]y(z)d−1 for k ≤ 1

b−1 = 1 and bk =
∑
d≥1

t◦d[z
k]x(z)d−1 for k ≥ 0

Eulerian triangulations:
t◦3 = t•3 = 1 and t◦k = t•k = 0 for k 6= 3:

⇒ ak, bk = 0 if k 6= −1, 2

We get the following system of equations:


x(z) = a−1z +

1

z2

y(z) =
1

z
+ a2−1z

2

a−1 = t+ 2a2−1

So that a−1 = t+ 2t2 + 8t3 + 40t4 + 224t5 + 1344t6 + 8448t7 + o(t7)

Along an edge labels either decrease by 1 or increase by 2:



Generating series of slices

Type A / B slice with
base of length p and increment k

p−tuple of type A/B elementary slices
s.t. sum of increment = k

weight-preserving
bijection

The generating series of slices with base of length p and increment k is given by:

[z−k]x(z)p for type A, and [zk]y(z)p for type B.



Pointed Disks
white / black root face

Slice with 0 increment
type A / type B

weight-preserving
bijection

l r

o

Coming back to pointed disks

F ◦p , F
•
p := generating series of hypermaps with a monochromatic white (resp. black)

boundary of degree p.

We have:
d

dt
F ◦p = [z0]x(z)p, resp.

d

dt
F •p = [z0]y(z)p.
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Two boundaries: trumpets and slices with increment 6= 0

Slice with
increment > 0.

Cornet : Hypermap with 2
monochromatic boundaries: one
rooted and one strictly tight

Bijection

Sketch of proof:

Remark: Similar result for slices of type B and trumpets with a tight face.

:= The boundary of the tight face is among
the shortest separating cycle between both
boundaries.

:= The boundary of the tight face
is the unique shortest separating
cycle between both boundaries.
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shortest separating cycle: we get an ordered pair trumpet/cornet.



Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the “inner-most”
shortest separating cycle: we get an ordered pair trumpet/cornet.



Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the “inner-most”
shortest separating cycle: we get an ordered pair trumpet/cornet.

Trumpet Cornet

,



Two monochromatic boundaries: general case

An hypermap with two monochromatic boundaries can be decomposed along the “inner-most”
shortest separating cycle: we get an ordered pair trumpet/cornet.

The generating series of hypermaps with two monochromatic boundaries are given by:

F ◦◦p,q =
∑
h≥1

h
(
[zh]x(z)p

)(
[z−h]x(z)q

)
, F ◦•p,q =

∑
h≥1

h
(
[zh]x(z)p

)(
[z−h]y(z)q

)
,

F ••p,q =
∑
h≥1

h
(
[zh]y(z)p

)(
[z−h]y(z)q

)
, F •◦p,q =

∑
h≥1

h
(
[zh]y(z)p

)(
[z−h]x(z)q

)
.

Trumpet Cornet

,



Rooted maps via cylinders
F ◦p , F

•
p := generating series of hypermaps with a monochromatic white (resp. black)

boundary of degree p. We established that:

d

dt
F ◦p = [z0]x(z)p, resp.

d

dt
F •p = [z0]y(z)p.

⇒ It “suffices” to integrate this expression to get the generating series of rooted maps.
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But, integration does not preserve algebraicity a priori ...

And, moreover, [Eynard 2016] tells us that the series

W ◦(x) :=
∑
p≥1

F ◦p
xp+1

and W •(y) :=
∑
p≥1

F •p
yp+1

admit the following rational parametrization in terms of x(z) and y(z):

Y (x(z)) = y(z) and X(y(z)) = x(z),
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∑
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Rooted maps via cylinders
F ◦p , F

•
p := generating series of hypermaps with a monochromatic white (resp. black)

boundary of degree p. We established that:

d

dt
F ◦p = [z0]x(z)p, resp.

d

dt
F •p = [z0]y(z)p.

⇒ It “suffices” to integrate this expression to get the generating series of rooted maps.

But, integration does not preserve algebraicity a priori ...

And, moreover, [Eynard 2016] tells us that the series

So let’s do something else than integration !
i.e. let us try to give a combinatorial sense of Eynard’s expressions...

W ◦(x) :=
∑
p≥1

F ◦p
xp+1

and W •(y) :=
∑
p≥1

F •p
yp+1

admit the following rational parametrization in terms of x(z) and y(z):

Y (x(z)) = y(z) and X(y(z)) = x(z),

with Y (x) :=W ◦(x) +
∑

d≥1 t
◦
dx

d−1 and X(y) :=W •(y) +
∑

d≥1 t
•
dy

d−1
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Hypermaps with boundaries

A map with boundaries is a map where some faces are marked (and rooted).
Other faces are called inner faces.

• Hypermap with monochromatic boundaries:

All faces (inner and boundaries) are colored.
⇔ The contour of all faces are directed cycles.

Only the contour of the inner faces are
required to be oriented.

• Hypermap with non-monochromatic boundaries:
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One more result

Generating series of hypermaps with a Dobrushin boundary condition:

p

q ∑
p,q≥0

Fp,q

xp+1yq+1

= exp

(∑
h∈Z

h

(
[zh] ln

(
1− x(z)

x

))(
[z−h] ln

(
1− y(z)

y

)))
−1

Again, the proof relies on some “trick” to interpret Dobrushin boundary
condition as some special families of cylinders.
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