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The primordial Universe is a 
high-energy laboratory

• Inflation is a high-energy phase of accelerated expansion in the early Universe 

ds2 = �dt2 + a2 (t) d~x2 ä > 0with and (10MeV)4 < ⇢ <
�
1016 GeV

�4



The horizon problem
ds2 = �dt2 + a2 (t) d~x2FLRW Universe:

Einstein equations: H
2 =

⇢

3M2
Pl

⇢̇+ 3H(⇢+ p) = 0and

Examples: pressureless dust: p = 0 �! ⇢ / a�3 �! a / t2/3

radiation: p = ⇢/3 �! ⇢ / a�4 �! a / t1/2

Null geodesics for photons:

us


Photon at BB


r = 0, t = t0

r = rem, t = 0

r, t

dt = adr �! r(t) = rem �
Z t

0
dt/a

Causal horizon: current distance to the 
furthest point a photon reaching us today 

can have been sent from

dhor = a(t0)

Z t0

0

dt

a(t)

a / tpIf           ,        is finite unless dhor p > 1

H = ·a/awith



The primordial Universe is a 
high-energy laboratory

• Inflation is a high-energy phase of accelerated expansion in the early Universe 

ds2 = �dt2 + a2 (t) d~x2

• Quantum vacuum fluctuations are stretched to cosmological distances and seed 
the large-scale structure of our universe

ä > 0with ⇢ 
�
1016 GeV

�4
and

!me	

Hubble	radius	a/ȧ

�k wavelength	

Minkowski  
vacuum

Particle Production

CMB

LSS
Quantum mechanics on cosmological scales!



How to realise inflation?
Einstein Equations: H

2 =
⇢

3M2
Pl

⇢̇+ 3H(⇢+ p) = 0

ä

a
= � 1

6M2
Pl

(⇢+ 3p)

Requires a fluid with negative pressure

Simplest system compatible with symmetries: homogeneous scalar field
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Implementing Inflation
V

00 ⌧ H
2

Effective field theory: integrate out the degrees of freedom >  ⇤

H ⌧ ⇤ ⌧ MPl

Quantum corrections tend to drive scalar masses to the cutoff scale   , 
unless the fields are protected by symmetries
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For a nice review, see Baumann and MacAllsiter 2014, “Inflation and String Theory”



Cosmological perturbations
Single scalar gauge-invariant degree of freedom v 3 ��, �gµ⌫

/ �T/T

Quantised starting from Bunch-Davies vacuum  v ! v̂

Quantum mean values compared with statistical averages in the sky 
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Cosmological perturbations
Single scalar gauge-invariant degree of freedom v 3 ��, �gµ⌫

/ �T/T

Quantised starting from Bunch-Davies vacuum  v ! v̂

Quantum mean values compared with statistical averages in the sky 
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Comparing models
Example: V / �p

nS = 1 + d lnP⇣/d ln k
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Kinematics reheating



Kinematics reheating
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Kinematics reheating



Kinematics reheating
⇢BBN < ⇢reh < ⇢end



Kinematics reheating
�1/3 < w̄reh < 1



Comparing models
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Encyclopedia inflationaris 
J Martin, C Ringeval, V Vennin

• First issue 2013, latest version 2024 (arXiv:1303.3787)


• Accurate slow-roll predictions for 287 models (all single-
field models proposed in the literature)


• Comes with a public runtime library ASPIC


• Results featured in the Particle Data Group review

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

Encyclopædia Inflationaris: Opiparous Edition

Qualitative Inflation

Quantitative inflation

!Encyclopædia
Inflationaris: Opiparous
Edition
!Primordial power
spectra

!Reheating consistent
model predictions

Bayesian inference

Predictions in model space

Conclusion
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" New version (published in PDU 10/2024) (arXiv:1303.3787v4)

# Deals with accurate slow-roll predictions for 287 models

# Comes with a public runtime library ASPIC

" Computes the Hubble-flow functions from the model parameters θinf

(θinf , Rrad) →→ ASPIC →→ εi(θinf , Rrad) ≡
d ln |εi−1|
d ln a

, ε0 ∝
1

H



S = M̄2 ∫ d4x −ḡ (1 + ξh2) R̄
2

−
1
2

ḡμν∂μh∂νh − M̄2 λ
4 (h2 −

v2

M̄2 )
2

+ Sm [ψm; ḡμν]

S = M̄2 ∫ d4x −g [ R
2

−
1
2

gμν∂μϕ∂νϕ − V(ϕ)] + Sm [ψm; A2(ϕ)gμν]

Example: Higgs Inflation

Higgs field in the Jordan frame

Conformal transformation

gμν = (1 + ξh2) ḡμν

dϕ
dh

=
1 + ξ (1 + 6ξ) h2

(1 + ξh2)
MPl

Esposito-Farese & Polarski 2000

Higgs field in the Einstein frame

V(ϕ) = M2
Pl (1 + ξh2)−2 M̄2 λ

4 (h2 −
v2

M̄2 )
2

A(ϕ) = (1 + ξh2)−1/2

Bezrukov & Shaposhnikov



Planck mass 
(as measured in Cavendish-type experiments)

Higgs Inflation

1
M2

Pl
=

1
M̄2

1
1 + ξh2

1 + (1 + 8ξ) ξh2

1 + (1 + 6ξ) ξh2

graviton exchange scalar particle exchange
Damour & Esposito-Farese 1992 & 1996

Today:                          so h ≃
v
M̄

≪ 1 M̄ ≃ MPl

ϕ
MPl

=
1
ξ

+ 6 arcsinh [ ξ (1 + 6ξ)h] − 6arctan
6ξh

1 + ξ (1 + 6ξ) h2

Inflaton

Limit              and               : ξ ≫ 1 ξh ≫ 1 ϕ ≃ 6MPl ln (1 + ξh2)

Potential V (ϕ) =
M̄4λ
4ξ2 (1 − e− 2

3
ϕ

MPl )
2
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Predictions

Higgs Inflation

Different reheating temperatures

⋯ + Sm [ψm; A2(ϕ)gμν]
Calculable in principle!

M
MPl

≃ 0.003
60

ΔN* (
𝒫ζ

2.2 × 10−9 )
1/4

CMB amplitude normalisation (GUT scale)

ξ ≃ 48000 λ = 24000
mh

v

Today:
mh ≃ 125GeV, v = 175GeV

ATLAS, CDF, CMS, D0 collaboration 



Starobinsky Inflation

S =
M2

Pl

2 ∫ d4x −ḡ f (R̄)f(R) theory  f(R̄) = R̄ +
R̄2

6μ2
with

Conformal transformation
gμν =

∂f
∂R̄

ḡμν

ϕ
MPl

=
3
2

ln ( ∂f
∂R̄ )De Felice & Tsujikawa 2010

S =
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1
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1
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Scalar field in the Einstein frame
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Comparing models
• Probability of a model  to explain the data : 




• Bayesian evidence 

ℳ 𝒟
P(ℳ |𝒟) =

ℰ(𝒟 |ℳ)P(ℳ)
P(𝒟)

ℰ(𝒟 |ℳ) ∝ ∫ ℒ(𝒟 |nS, r, ⋯)πℳ( ⃗θinf, ⃗θreh, ⋯)d ⃗θ

✓

LIKELIHOOD	

PRIOR	

�L

�⇡

Lmax

E (M) =Lmax
�L
�⇡

Compromise between quality of the fit  
and lack of fine tuning
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Machine-learning an effective likelihood

Qualitative Inflation

Quantitative inflation

Bayesian inference

!Machine-learning an
effective likelihood

!Marginalized posteriors

!Computing bayesian
evidences
!Bayes factors for all
models
! Information gain on the
reheating

Predictions in model space

Conclusion
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" To speed-up data analysis for 287 models

Leff(D|P∗, ε1, ε2, ε3) →
∫

P (D|θs, P∗, ε1, ε2, ε3, ε4)ε(ε4)ε(θs) dε4dθs.

" The full likelihood has 55 parameters and is built upon

# Planck 2020 post-legacy TT , TE, EE data (PR4/NPIPE maps)

# Large scale EE polarization (lowE)

# BICEP/Keck B-mode 2018 (arXiv:2110.00483)

# Small scale TE and EE from SPT-3G (arXiv:2103.13618)

# Baryon Acoustic Oscillations (SDSS collaboration)

" MCMC exploration of the 55 dimensions

# COSMOMC up to 25 million samples (R− 1 < 10−3)

# GetDist marginalization in 4D: P∗, ε1, ε2, ε3

" Basic machine learning: 1 hidden layer with 300 nodes

Courtesy C. Ringeval
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Bayes factors for all models
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Information gain on reheating
• Kullback-Leibler divergence between the prior and posterior 

Dreh
KL = ∫ P( ⃗θreh |𝒟)ln [ P( ⃗θreh |𝒟)

π( ⃗θreh) ] d ⃗θreh
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!"

!"
!"

Information gain on the reheating

Qualitative Inflation

Quantitative inflation

Bayesian inference

!Machine-learning an
effective likelihood

!Marginalized posteriors

!Computing bayesian
evidences
!Bayes factors for all
models
! Information gain on the
reheating

Predictions in model space

Conclusion
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" Kullback-Leibler divergence between the prior and posterior

Drad
KL

=

∫

P (lnRrad|D) ln

[

P (lnRrad|D)

π(lnRrad)

]

d lnRrad,
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" Kullback-Leibler divergence between the prior and posterior

Drad
KL

=
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P (lnRrad|D) ln
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π(lnRrad)

]

d lnRrad,



Prospects on constraining reheating
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Example: Higgs Inflation vs the Starobinsky model 



Conclusion
• Cosmic inflation can be embedded in various high-

energy constructions. 

• Out of the 287 single-field models proposed so far, 40% 
are excluded by CMB data, while 25% remain favored. 

• The data starts to be sensitive to the reheating 
dynamics, hence probes how the inflationary sector 
couples to the standard model. 

• These constraints will get better in the future with CMB-
S4, Euclid and LiteBIRD on their way!
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Back up slides



Radiative corrections

Higgs Inflation

Barvinsky, Kamenshchik, Starobinsky (2008) 
De Simone, Hertzberg, Wilczek (2008) 

F(h) = 1 + ξh2 +
C
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Radiative corrections

Higgs Inflation

Barvinsky, Kamenshchik, Starobinsky (2008) 
De Simone, Hertzberg, Wilczek (2008) 

F(h) = 1 + ξh2 +
C

16π2
h2 ln ( M2

Plh2

μ2 )
U(h) = M2

Pl
λ
4 (h2 −
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2

+
λA

128π2
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A =

3
8λ [2g4 + g2 + g′￼

2 − 16y4
t ] + 6λ + 𝒪 (ξ−2) C = 3ξλ + 𝒪 (ξ0)with                                                                                          and

μ: renormalisation scale,      : Yukawa coupling of the top quarkyt
g, g′￼:  coupling constants of the                and              groupsSU(2)L U(1)Y

V(ϕ) ≃
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Plλ
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Starobinsky Inflation

Reheating
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Higher-gravitational corrections f(R̄) = R̄ +
R̄2

6μ2
+ α ( R̄

6μ )
3

V(ϕ) =
3
4

M2
Plμ

2 (1 − e− 2
3

ϕ
MPl )

2
1 + 1 + 3α (e

2
3 ϕ

MPl
− 1) + 2α (e

2
3 ϕ

MPl
− 1)

1 + 1 + 3α (e
2
3 ϕ

MPl
− 1)

3

Starobinsky Inflation

|α | < 10−3



Running of µ with curvature

Starobinsky Inflation

f(R) = R +
R2

6μ2 [1 + b ln ( R
μ2 )]Liu, Prokopec, Starobinsky (2018)

(asymptotically safe)

b=10-3

b=10-2

b=10-4

VE /MP4=6.0×10-10

VE /MP4=1.2×10-10

1.×10-8 2.×10-8 3.×10-8 4.×10-8 5.×10-8 6.×10-8
Φ /MP

1.×10-10

2.×10-10

3.×10-10

4.×10-10

5.×10-10

6.×10-10

7.×10-10

VE /MP4

|b | < 10−2

Higher derivatives in R
Gottlöber, Schmidt, Starobinsky (1990)

f(R) = R +
R2

6μ2
+ γR □ R γR □ R(               treated perturbatively)

|γ |μ4 < 0.05



Higgs/Starobinsky Inflation

Scalar geometrisation ℒ =
M2

Pl

2
R −

ξ
2

Rϕ2 +
1
2

gμν∂μϕ∂νϕ − V(ϕ)

Assume ϕ is slowly rolling, such that its kinetic term can be neglected compared to its potential energy 

ξRϕ = − V′￼(ϕ) + 𝒪 (ξ−1) (no conformal transformation, we remain in the physical - Jordan - frame)

These solutions are the same as for f(R) gravity with f(R) = R − ξR
ϕ2 (R)

M2
Pl

−
2

M2
Pl

V [ϕ (R)]

With a potential                                            this precisely gives                                   with V(ϕ) =
λ
4 (ϕ2 − ϕ2

0)2
f(R) = R +

R2

6μ2
μ = MPl

λ
3ξ2

Mixed Higgs-R2 inflation
He, Starobinsky, Yokoyama (2018)

ℒ =
M2

Pl

2 (R +
R2

6μ2 ) −
ξ
2

Rϕ2 +
1
2

gμν∂μϕ∂νϕ −
λ
4

ϕ4

In the attractor regime during inflation —>  f(R) = R +
R2

6μ2

with
1
μ̃2

=
1
μ2

+
3ξ2

λ
M2

Pl


