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The primordial Universe is a
high-energy laboratory

* Inflation is a high-energy phase of accelerated expansion in the early Universe
ds? = —dt? +a® (1) d#? with G >0 and (10MeV)* < p < (10'° GeV)"
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I'he horizon problem

FLRW Universe:  ds? = —dt? + a? (¢t) d2?

Einstein equations: H?* = 3]@2 and p+3H(p+p) =0 with H=adla
Pl

Examples:  pressurelessdust: p=0 — pxa® — axt??

radiation: p=p/3 — pxa?t — aocctl?

t
Null geodesics for photons: dt =adr — 7r(t) =7rem — / dt/a
0

Photon at BB Causal horizon: current distance to the
) furthest point a photon reaching us today
= Tem,t =0 can have been sent from
5 /:t o dt
dhor — a(tO)/ B
r=0,t=t o af(t)

If @ oc tP, dnor is finite unless p > 1



The primordial Universe is a
high-energy laboratory

* Inflation is a high-energy phase of accelerated expansion in the early Universe

. 4
ds? = —d® +a®>(1)dZ® with 4 >0 and p < (10'°GeV)

* Quantum vacuum fluctuations are stretched to cosmological distances and seed
the large-scale structure of our universe

Ak wavelength s
/K Particle Production —
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a/a Hubble radius
vacuum |

¥

time

Quantum mechanics on cosmological scales!




How to realise inflation”

P G 1

- 6ME,
p+3H(p+p)=0

Einstein Equations: H? =

Requires a fluid with negative pressure

Simplest system compatible with symmetries: homogeneous scalar field

M? 1
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Implementing Inflation

V// << H2

Effective field theory: integrate out the degrees of freedom > A

H< A< M,

Quantum corrections tend to drive scalar masses to the cutoff scale A,
unless the fields are protected by symmetries

V//
Am2~A2 >>H2 > A(ﬁ) >>1

Higher-dimension operators

¢2 V// Ms
V—>V<1+CF+--- > Algp | =bepm > 1

For a nice review, see Baumann and MacAllsiter 2014, “Inflation and String Theory”



Cosmological perturbations

Single scalar gauge-invariant degree of freedom v > 09, 0g,,,
x 0T /T

Quantised starting from Bunch-Davies vacuum v — ¥

Quantum mean values compared with statistical averages in the sky
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Cosmological perturbations

Single scalar gauge-invariant degree of freedom v > 09, 0g,,,
x 0T /T

Quantised starting from Bunch-Davies vacuum v — ¥

Quantum mean values compared with statistical averages in the sky
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Comparing models

Example: V x ¢?
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Comparing models

Example: V x ¢?
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Different reheating scenarios
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Kinematics reneating
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Kinematics reneating
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Kinematics reneating
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Kinematics reneating
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Comparing models

Example: V x ¢?
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Different reheating scenarios

X ] 11.0
/N [ -
s 03¢ -]
N—— : 1 :

~E o Different values of ¢ ] 9.0
= X . ]
0 - ]

! o0zf L 1 70
A [ ]
~~ - 2 -
= - 3 .
SN - ]

I - {1 6.0
~ _ ]
0.1 -

; 1 3.0

0.0L_. N P A . R .1 1.0

0.90 0.92 0.94 0.96 0.98 1.00 P

ng=1+dInP;/dInk

I\ 2 V!



o - - - = -. ~ o -
" - = -
™\ / Ll = >,
% mn\ o - B - = . ) | . ) > g
N 1. % \ - A X e 7 1 T= | y = =\ "1
= \\ 7S » \\ T\ \ \ R
. | T A1) o o E sl Sy wll e | "\ L | ol s \ \ o
| ! = - - \ I\
‘ I—17 = - n (i a A
“1 il A - 1 = - e 3 Yi
- J - "1 = : L.. o ) : - - ol -~ ’ H - ’ H - ] -
A R e i e e ) an am wm e A . " wm am e am e s L Cy -~ e Ny
- — - — - —— -~z - ~im
- - - " " - " pe = w o
= = - o o} " . AT = . & =
- \‘\ - el \\ _ - oo . - - o e - o
pd ( o S N L wel - o o o { o
\\ 1 Y ,\\ |
rq .-y | ‘ | |l| ) "T | M of B \ ol ewsp = - 2w ol - - | ‘u, B
| i b - ’ . | o u " " [ "i y
Tl o s - g = =
4 1+ -1 - ‘ o W« o 1 - i 3 1 . it
- el el el - 2 ! ol | wel 1 = | o
- B T T L LT e T S e e hw Py w ww am am e amam m g, e L
- — ~ o - “ - ———— ~ ———
> - - - - - w -
ey
3 2 » o (\ = ¢ Jd - i R S ! “ Al > A
- - - - - - ; - -
2 " N el " ~ld " [N ] = - = At N
N\ AT\ 1n\\ AT\ el - pos el i ,\\
«w AL o e 1) - -l | o -l I . wlll ¢ { . I\ -
Al | | ’ | P - & ]
vl E = | g » . - | -
- 1/ -y PR e
&= I \‘ - - 1 - 1 - 14 - el = -
- . | t - ol -l - ol . -~ ool
e e eEmE T e e e e e e e e Re e e e e N e
o - - = - = - g &
o s -~ \ ol = o \ s o wh » L b g . - .
m N B M\ P " N L } r ) - 0\ e
= aid A\ 4 o AN il o | d .= \ a
1l 1| " -
S ] ] - - 4 . 1 4
-y -y - w 3
! b 4 |- ; 1l H . -
-t
ol -l - ol ot el ol
TR e T . N N wn R Tim v e e I B ) )
“ —— N ot ——
- . ] . 1 - - ) 1
- "] = o\ » - %
{ N\ I &\ i - - K A -
- ¥ \l e \
f e\ N
£ -] :.‘t 4\l ol o 1) ol e I \\‘ o <
o i 4 4 %) J
- o !/ .l -t e () i
- = - ‘ o N ’ ol - {4
w ‘ - LR N YR LU, o
e am e e e e T T L T ey B N en e ey
- foon -
w - - " - " - "
-
o o -l = , I -
- - i S -
o ==l ("\\—.- E e 7. e
- \\ 4 . 1N , ‘ f . o
- H t A\ o -
"] | - N B B ‘H \l -
- {1 r
. I . o ull o !
B L g T an e am im e “em P
- — - ———— “
- = - - e - 51
1% -y 'S et . -l 5 - ”c\ K
= M | ’(\\ l ‘\\.‘ |
= IR Y § Ly won o | N . # ) \ \\ -
)' = I |
- . -
- e W w : w
- R - - - ’
- o L - - el -
T e em T T Ty T N T - T T I R
- - “ —n “
- -
- - E R -
y - = B La g ) — B e ol
- P = - ~ -
- 2 J1- 1IE H 37 4= A N g N M
e | \\ . = ol ] - o . . v\ o
1\ = = - o
-l - ot - o - =
i -
., | ’ B “ = L ki |1
- ool ol Bt
R . P T - e an IR T e e e p T N
~ -~ ——— -
B - - ] el
- . ‘il -
wd - w - i o -t
\ el (
n '}. o\ y o ! -
-y 1R\ ol | | = BELE - ) l% ) « Loclliee 1y ol
- - L . Ay #Hi o
s N ol = " wl — |
g e 2 % " 114 T4 {3
- - L L el - w‘: el
> — MRTIETIE m IR saNM an a8 e e e et ae e ) o S
T - - w - F o
e .
- R ! - e e - = B
— ' \ —— \ “ - \ ey
. ! 7 InF o el e & p < \\ 5
-t - ' 1\l ol i - | 1‘ o o - . | -«
el P
f | N N i
| I} Il
L l oo -l - — .ol
E g~ T T I e T R P —— R L
- -
- =
- k\ . - . :: o - -: 3 ot i (( )
el - - = 1 .
V‘\ - we = b ol | et  — - ] If\\l
o | - \ -l 4 - - o . $ o
- [\ P 1S | B e w N
s ' l e - - e Rl el e
| 3 13 H-H3 1 - 4l
S TR P e it e e i o gy
-~ ——— -~ " e ~




Encyclopedia inflationaris

J Martin, C Ringeval, V Vennin

&
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ey

e First issue 2013, latest version 2024 (arXiv:1303.3787)

e Accurate slow-roll predictions for 287 models (all single-
field models proposed in the literature)

e Comes with a public runtime library ASPIC

* Results featured in the Particle Data Group review



Example: Higgs Inflation

Bezrukov & Shaposhnikov

Higgs field in the Jordan frame

_ R 1 A
— A2 | A4 > 2 SHU 2 2
S=M de\/—g (1+¢&n°) L dﬂhayh—MZ<h -

g, =(1+&0%) g,

Conformal transformation

M2

>2

Esposito-Farese & Polarski 2000

d¢=\/1+§(1+65)h2

dh (1+¢&n?)

Higgs field in the Einstein frame

_ R 1
S = Mz[d“x\/—_g [5 -5 80,0, — V()

2
2
V() = M2 (1 +Er?) MZ% (h2 — V—>

>—1/2

A(p) = (1 + &n?

+S,, [wm; Az(qb)gﬂy]

M?2

MPI

+ S [wm; gﬂy]



Higgs Inflation

. 2
Planck mass F 1_} 1 + 85 ch }
(as measured in Cavendish-type experiments) MI%I M 2!1 + fhﬂ 1+ 1 + 65 fhzl

Damour & Esposito-Farese 1992 & 1996
graviton exchange scalar particle exchange

Today: hz%«l so M ~ My,

Inflaton Mipl =1 /% + 6 arcsinh [\/5 (1 + 65) h] — \/garctan \/th

\/1+é(1+6§)h2

Limit £>> 1 and Eh>> 1: ¢ = 1/6MpIn (1 + Eh?)

Potential

V/M*

00057 2.5 5.0 7.5 10.0

¢/ Mp)




Higgs Inflation

Predictions Different reheating temperatures
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Starobinsky Inflation

Starobinsky 1980

f(R) theory S = M_lgl J d*x+ /=3 f( R) with R =R+ R_z Contains one tensor
2 6

> + one scalar propagating dof

_9
g v g,ul/

Conformal transformation

De Felice & Tsujikawa 2010 \/: n
MPI

Scalar field in the Einstein frame

N T
MPlJ' M3, aR‘ R— —f(R)
d*x,/—g |R — "o Po p — V with  V(¢) =
[ 8 d,0,¢ Mo (45)] (@) > "
(L)
1.00+
< 0.751
=
> 0.501
CMB amplitude normalisation —— = 0.003 0.95]
Pl
—) oy~ 1()—5MPl ~ 108Gev "% 00 2.5 5.0 75 100

¢/ Mp



Comparing models

e Probability of a model ./ to explain the data :
ED | M)P(M)
P | D) =
P(2)

 Bayesian evidence

—)

g(9 | %) X J"g(9 |n87 )ﬂﬂ( inf? reh’ )dé}

AL
AL & (M) :['max A
| . B
Lmax Compromise between quality of the fit
9 and lack of fine tuning

<€ >

AT




Courtesy C. Ringeval

Machine-learning an effective likelihood

® To speed-up data analysis for 287 models

£eﬂ‘<D‘P*,€1,€2,€3> O(/P(D|HS,P*,€1,82,€3,84) 7'('(84) W(es) d€4d95.

® The full likelihood has 55 parameters and is built upon

+ 4+ 4+

<4

Planck 2020 post-legacy 7T, TE, EFE data (PR4/NPIPE maps)
Large scale E'F polarization (LowE)

BICEP /Keck B-mode 2018 (arXiv:2110.00483)

Small scale TE and EF from SPT-3G (arXiv:2103.13618)
Baryon Acoustic Oscillations (SDSS collaboration)

® MCMC exploration of the 55 dimensions

*
*

COSMOMC up to 25 million samples (R — 1 < 1073)

GetDist marginalization in 4D: P,,c1,e9, €3

® Basic machine learning: 1 hidden layer with 300 nodes
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Information gain on reheating

* Kullback-Leibler divergence between the prior and posterior

P (éreh | 9 )
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DI = [P(é}eh | D)In o,
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Information gain on reheating

Kullback-Leibler divergence between the prior and posterior

DM = [P(é}eh | D)In

P (5reh | ) )
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Prospects on constraining reheating

Example: Higgs Inflation vs the Starobinsky model
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Conclusion

Cosmic inflation can be embedded in various high-
energy constructions.

Out of the 287 single-field models proposed so far, 40%
are excluded by CMB data, while 25% remain favored.

The data starts to be sensitive to the reheating
dynamics, hence probes how the inflationary sector
couples to the standard model.

These constraints will get better in the future with CMB-
5S4, Euclid and LiteBIRD on their way!



Thank you for your attention!
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Higgs Inflation

21,2
-~ : Fiy = 1+ eh? 4+ ——p21n [ 20"
Radiative corrections () =T1+ch"+T—h"In| —3
Barvinsky, Kamenshchik, Starobinsky (2008) o) K
De Simone, Hertzberg, Wilczek (2008) A V2 1A MI%I h2
Uhy=Mz—| h*—— | + MZh*In
4 M? 12872 y?

3
with A= — [2g4 + g2+ g% 16y;‘] +61+0(E2) and C=3E+ 0 (&)

U: renormalisation scale, Y;: Yukawa coupling of the top quark
g, 8 : coupling constants of the SU(2); and U(1)y groups
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Higgs Inflation

2 C 2 Mlglh ?
Radiative corrections Fthy =14 ch”+——hIn| —3
Barvinsky, Kamenshchik, Starobinsky (2008) o) K
De Simone, Hertzberg, Wilczek (2008) A V2 1A Mlgl h2
Uhy=Mz—| h*—— | + MZh*In
4 M? 12872 y?

3
with A= — [2g4 + g2+ g% 16y;‘] +61+0(E2) and C=3E+ 0 (&)

U: renormalisation scale, Y;: Yukawa coupling of the top quark
g, 8 : coupling constants of the SU(2); and U(1)y groups
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Starobinsky Inflation

Reheating
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Starobinsky Inflation
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Higher-gravitational corrections  f(R) =R + — +a

Vou
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Starobinsky Inflation

R2
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Running of p with curvature f(R) =R+ (asymptotically safe)

Liu, Prokopec, Starobinsky (2018) 6u?
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Higher derivatives in R J(R) =R+ ﬁ +yR[]R (yR[]R treated perturbatively)
U

Gottléber, Schmidt, Starobinsky (1990)
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Higgs/Starobinsky Inflation

Scalar geometrisation

2
% = PR - SR + g, 000 — Vi)
2 2 2
Assume ¢ is slowly rolling, such that its kinetic term can be neglected compared to its potential energy
— (Rp=-V' (qb) + 0 (5_1) (no conformal transformation, we remain in the physical - Jordan - frame)
. o ¢* (R)
These solutions are the same as for f(R) gravity with  f(R) = R — &R —

g O
With a potential V(¢p) = % (¢2 — ¢§)2 this precisely gives f(R)

R2
Mixed Higgs-R2 inflation

=R+— with p=Mpyq|—
6u?
He, Starobinsky, Yokoyama (2018)
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In the attractor regime during inflation —> f(R) =
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