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Introduction

* Photons are reconstructed using the ECAL response — not perfect

* As a result, the reconstructed photon energy must be corrected

Am/m~AE/FE

* Inaccurate energy calibration would lead to important systematic errors




Introduction

* The photon energy scale is currently derived using Z — e*e” events, using

the Z boson mass and assuming an electron-photon showers equivalence in
the ECAL. (data are rescaled and MC smeared)

* This method relies on extrapolating electron-based corrections to photons

and thus provides an indirect calibration

— Provides a complementary and independent calibration with direct

sensitivity to photons.
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1) Samples used and selection criterias

— Reused the datas and MC used by a previous intern (Mathias) to check my results.

(from Jie, with Scale and Smearing already applied)

* MC:/Run3Summer22EENanoAODv11/DYto2L-2Jets MLL-
\ 50 TuneCP5 13p6TeV amcatnloFXFX-pythia8/NANOAODSIM /




1) Samples used and selection criterias

* Dimuon selection: * FSR selection:
(already done) Min (A R(p*,y)) <0.8
Lonargea/ Pr < 0.2 p> 30 for the muon the furthest of ~
1
pr > 10 GeV My € [60,120] GeV
my, > 39 GeV

< 2.4 M1, < 180
[ -

* Endcap, Barrel and R9 selection:
* Photon selection: Ecal Barrel (EB) |n| < 1.442
(already done) Ecal Endcap (EE) 2.5>|n| > 1.566

pr> 20 GeV low /hich .
1.566 < |n| <2.5 ow/high R9 Ry</>0.9



1) Samples used and selection criterias

Endcap (EE)

Bouchons

* Data EB low/high R9: 34623 /
68755

* MC EE low/high R9: 14144 / 52851

* MC EB low/high R9 60427 / 137977
\ / Image from Antoine Lesauvage
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Events/(1.5 GeV

Data/MC

2) Data & MC kinematics

* Distribution of M,,, and M,, for the Endcap
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2) Data & MC kinematics

* Distribution of M,,, and M,, for the Barrel
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Events/0.3 GeV

Data,/MC

2) Data & MC kinematics

* Distributions of prof v for Endcap and Barrel
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3) Method used

2
MMT

T
my — My,

- M ﬁ 1 h * M,., M,, comes from the events
wiere

1+S5 =
* my is the PDG value

— For simplification, we suppose that S € [—0.5,0.5]
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3.1) Method used: fitting of S for each %

* We separate the data with increment of 1% from 100% to 60%, we fit the S
distribution for all these samples.

* The function used for the fit is a Voigtian distribution, using an unbinned fit with

negativ likelyhood (iminuit):

V(im,pu,o,79) = [ | G(z,o)L(m — x, u,7vy) dx
J —o0

|

2m

¥
(s ((;r - ;.q_)'“’ A ,-j.,..z)

with G = (‘xp('—'_':"r) and L(z,u,vy) =

Q

* In order to compute the x? and p-value, we choose a number of bins corresponding to

a smooth distribution of the EE low R9 data, and keep it for all other samples.
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3.1) Method used: Selection of %

* We start from the bin with the most events, and take one bin on each side
until until we reach the correct %.

250 +

200 H

Events/0.01 GeV

5 A

150 +

Lo+

EE low R9

T
—0.4

T T T T
—0.2 (.0 0.2 (.4

* If one of the side of the

distribution is reach we stop.

* Don’t enable to take precise %

(see next slides)

— to be updated
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3.1) Method used: Selection of %

* The p-values, x? / ndf and S with its statistical uncertainty are computed for each fit
and are used to select the best fit. We see the effect of the % choice method on the left.

EE low R9 EE low R9
1.0 i —— LA
”e
0.8 i o
—00.019 ~
0.6
—&— p-value —0.020 1
v /ndf s
=== Acceptance Level (0.01)
0.4 1
—0.021 1
0.2 H
—10.022 +
| e e I D L B
T T T T T T T T T T T T T T T T T T
GO G5 il 75 80 85 90 a5 100 G0 G5 70 75 80 85 90 95 100
Percentage of Data Used for Fit (%) Percentage of Data Used for Fit (%)
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Events/0.01 GeV

3.2) Method used: Best fit selection

* To select the best fit, we look at all the fits using 90-100% of data, and we keep the one
having the smallest statistical uncertainty on S as well as a p-value above 1072 .

RS

EE low R9

—— DBest Voigtian fit
// !
P

If none of the fits in the 90-100% interval
satisfies this condition, we repeat the
process in the 80-90% interval and so on. If
none of the fits have a p-value above 1072 ,
we restart, but change the selection to fits

with a p-value above 1073 and so on.

For EE low R9, best fit is at 99%
S = -0.02 4 0.0019
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3.3) Method used: Systematic error due

to the choice of the interval

* We take the maximum difference between the chosen best fit S and the other ;1 in a

20% around the chosen percentage.

EE low R9
—0.018 o ’“i.ﬂ-“
9 Bh err; = max (S — ooy )
i S = -0.02 + 0.0019 <+ 0.00077

—0.022 H

T T T T T T T T T
60 G5 T 75 80 85 90 95 100
Percentage of Data Used for Fit (%) 1 6



3.4) Method used: Systematic error due
to the choice of the fit

* With the parameters of the best fit, we generate 1000 toys models of 10 000 events
each. Each of these toys model is fitted with a Cruijff function:

—(m — mg)? )

C(m:mg.0r.0p.ar.0p) = ex _
( 0,0L; OR; XL, OR) p(202+a(rrz—171(,)2

op,ar if m—myg<0
g,0= .
or.ag if m—mg>0

* Then we fit a gaussian distribution on the 1000 m, of the previous toys model.

17



to the choice of the fit

G0
S
10
30 4
20 1
10+

0

3.4) Method used: Systematic error due

EE low R9

*icttii

T
—1.04

T
—10.03

T T T
—0.02 —0.01 0.00

T
0.01

* The difference between the p of the latter
gaussian and the one of our best fit is the

systematic error.

S = -0.02 £+ 0.0019 £ 0.00077 + 0.00003
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3.5) Autoclosure test:

* To test the validity of the code, we compute S. Correct p, and recompute

r2 2
M,y = (Py +Ppt + Du-)

* Then we expect S to be 0 with the uncertainties

EE low R9 corrected EE low R9 corrected
209 —4— utAp
0,002 4 —— Minimal error
200 -
0.001 -
= 150 1
z o 0.000
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04
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04 02 v 02 0.4 60 65 70 75 80 85 90 95 100
g

Percentage of Data Used for Fit (')
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4) Results

Sample

EE low R9 -0.02

EE high R9  -0.0019

EB low R9 -0.0079

EB high R9  -0.004

0.0019

0.00091

0.00084

0.0005

0.00042 0.00015

0.0007
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4) Results: p-value and y?

EE high R9

EB low R9
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4) Results: S vs %

EE high R9 EB low R9 EB high RO
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4) Results: best

EE high R9

—— Best Voigtian fit

1.0 S X
Y 1
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4) Results: m, gaussian fits

EE high R9

EB low R9

EB high R9

Gaussian fit
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4) Results: auto-closure test

stat

EE low R9

EE high R9

EB low R9

EB high R9

- 6.10-4

- 3.10-6

- 8.6 10-4

- 3.10-3

100
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0.013

0.011

0.0019

0.0009

0.00084

0.00042

7.10-4

8.5 10-5

0.0003

9.87 10-5

1.10-5

3.5 10-4

0.0007

2.9 10-4
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4) Conclusion and perspectives

* Results of the code are satisfying, but it still need to be perfectionned and
optimized in order to be shared (number of bins, handling of the %, taking
into account the weights for MC, move from ipyn to an efficient package)

* Plots of pr need to be added

* Supplementary corrections on p need to be applied

* Objectiv: apply the code to the run 2 Ultra legacy and compare with the
result of Paul (from Saclay) and the code 1Jazz
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